CHAPTER 7

MULTIPLE REGRESSION

Purpose

The goal of simple regression is to obtain a linear equation so that we can predict the value of the DV if
we have the value of the IV Simple regression capitalizes on the correlation between the DV and TV in
order to make specific predictions about the DV (Sprinthall, 2000). The correlation tells us how much
information about the DV is contained in the IV. If the correlation is perfect (e, r = £1.00), the IV
contains everything we need to know about the DV, and we will be able to perfectly predict one from

this line is sometimes said to pass through the centroid of the Scatterplot (Sprinthall, 2000). In order to
make predictions, three important facts about the regression line must be known:

(1) the extent to which points are scattered around the line,
(2) the slope of the regression line, and
(3) the point at which the line crosses the Y-axis (Sprinthall, 2000).
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Chapter 7 Multiple Regression

These three facts are so important to regression that they serve as the basis for the calculation of the re-
gression equation itself. The extent to which nts are scattered around the line 1is_typically indi-

ca ‘ { relationship between the IV (X) and the DV (¥). This relationship is measured by~
a carrelation coefficient (e. g., the Pearson correlation, symbolized by r)—ithe stronger the relationship,

unjf change (i.e., one point, one inch, degree, etc)in X, largely determines the
predicted values of ¥ from known values for X. F inally, it is important to determine exactly where the
w%hﬂme%&%m.mmm_@mhsmmwm
Wue is expected for ¥ when X = 0.

Figure 7.1 Bivariate Scatterplot Showing Several Possible Regression Lines.

Y

X

These three facts we have Jjust discussed actually define the regression line. The regression line
is essentially an equation that expresses ¥ as a function of X (Tate, 1992). The basic equation for simple
regression is:

Y=58X+aq (Equation 7.1)

the regression equation should now be apparent to the reader. Oftentimes, you will see the above equa-
tion presented in the following analoggus, although more precise, form:
&R B

, £
Y = 39 +%;X, + &~ eEﬁ% e (Equation 7.2)
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Chapter 7 Multiple Regression

where Y is the predicted value for the DV, X is the raw score value on the IV , By is the slope of the re-
gression line, and Bj is the Y-intercept. We have added one important term, &;, in Equation 7.2. This is
the symbol for the errors of prediction, also referred to as the residuals. As previously mentioned,
unless we have a perfect correlation between the IV and DV, the predicted values obtained by our re-
gression equation will also be less than perfect—that is, there will be some errors. The residuals consti-
tute an important measure of those errors and are essentially calculated as the difference between the /
actual value and predicted value for the DV (i.e., & = Yi- ).
Let us return momentarily to the concept of the best-fitting line (see Figure 7.2). The reason that
we obtain the best-fitting line as our regression-equation is because we ematically cs o i
with the smallest amount of total squared error. This is commonly referred to a uares solu-

tion (Stevens, 1992; Tate, 1992) and actually provides us with values for the constants in the regressign oo
® ] eﬁ?

[NaLNCINA

equation, B; and By (also known as the regression coefficients (B), beta coefficients or beta weights

that minimize the sum of squared residuals—that is, Z(y; —§)* is minimized. In other words, the 7oz,
amount of prediction error, both positive and negative, is as small as possible, giving us the best mathe-
matically achievable line through the set of points in a scatterplot.

b
Itiple ession. | ion, of simple linear regression jnvolvin ‘more than one
regression Js merely an extensi ) 285100 myolving more than one

1V, or predictor variable. This technique is used to predict the value of a single DV from a m\;gighted, 4
regression counterpart except that there are more coefficients, one for the Y-intercept and one for each of §>
the IVs: ,

: Y =By +BX; +BXy + ...+ BX, + &, (Equation 7.3)

linear combination of IVs (Harris, 1998). A multiple regression equation appears similar to its simpl
A ?ﬁ

W
where there is a corresponding B coefficient for each IV (Xo) in the equation and the best linear combi- \{ . -,;f
nation of weights and raw score X values will again minimize the total squared error in our regression 3
equation.

Let us consider a concrete example: Suppose we wanted to determine the extent to which we
could predict female life expectancy from a set of predictor variables for a selected group of countries
throughout the world. The predictor variables we have selected include percent urban population; gross
domestic product per capita; birthrate per 1,000; number of hospital beds per 10,000; number of doctors
per 10,000; number of radios per 100; and number of telephones per 100. In our analysis, we would be )
looking to obtain the regression coefficients for each IV that would provide us with the best linear com-
bination of IVs—and their associated weights—in order to predict, as accurately as possible, female life
expectancy. The regression equation predicting female life expectancy is as follows:

Female life exp. = BusaXurtan + BaprXapp + BoitrateXoirtwate + BreasXoets + BuesXopms + B adtiosraios +
Bphones‘x;zhanes + éi

We will return to this example in greater detail a bit later in the chapter, but first there are several impor-
tant issues related to multiple regression that warrant our attention.

A first issue of interest is a set of measures unique to multiple regression. Another way of look-
ing at the previously mentioned concept of the minimization of total error is to consider multiple regre

~—Slon.as a.means.of seeleing-the lingar combination of IVs that maximaliu.corselate

*1992). This maximized correlation is called the multiple
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Chapter 7 Multiple Regression

ues and the predicted values on the DV (i.e., R = #,;). Analogous to our earlier interpretation of the
Pearson correlation, the multiple correlation tells us how much information about a DV (e.g., female life
expectancy) is contained in the combination of IVs (e.g., percent urban population, gross domestic
product, birthrate, number of hospital beds, number of doctors, number of radios, and number of tele-
phones).\ In multiple regression, there is a test of significance (F-test) to determine whether the relation-
hip between the set of IVs and the DV is large enough to be meaningful.]

!

Figure 7.2 Graphical Representation of a Linear Regression Model and the Least Squares Criterion.
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You may recall from an earlier course in statistics a term called the coefficient of determination,
or . For the Pearson r, this value was interpreted as the proportion of one variable in the pair that can
be explained (or accounted for) by the other variable. In multiple regression, R’ is also_galled-the cref-—— .
ficient of determination and has a similar interpretation. “The coeilicicn of determmatlon is the propor-_*

-
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Chapter 7 *Multiple Regression

__tion of DV variance that-can be explained by the combination of the Vs (Levin & Fox, 2000; Sprinthall,
2000). In our example, an obtained value for & would be interpreted as the proportion of variability in
female life expectancy that could be accounted for by the combination of the seven predictor variables.
If one multiplies this value by 100, R? becomes the percentage of explained variance (Sprinthall, 2000).

A second issue is one that has an associated word of caution, which we will address momentar-

ily. The issue at hand is that of multicollinegrify. Multicollinearity is a problem that arises when there
exists_moderate-te-high..igtercorrelations among predictor variables (IVs) to be used in a regression

analysis. (Recall from Chapter 1 Thz OPPOSIIE oL Asedllmearty 1S akthagonali complete in-
dependernice among variables.) The underlying problem of mulﬁéﬁlihearity is that i variables are
T-I'Iigﬁ'l'j'(mé’aﬁ(e”ﬁftgaﬁﬁey are essenTially containing the same—or at least much of the same—informati
and are therefore measuring the same thing (Sprinthall, 2000). Not only does-ﬂ'nﬂ.gain,ﬁmg_bx_adding
to a regression analysis variables that are measuring the same mm;mgmm%n%% cause real
problems for the analysis itself. Stevens ( 1992) points out three reasons why multicollinearity can be
“——problemmatic fof tesBAfcty g "
(1) Multicollinearity severely limits the size of R since the IVs are “going after” much of the same
variability on the DV.
(2) When trying to determine the importance of individual IVs, multicollinearity causes difficulty
because individual effects are confounded due to the overlapping information. )
(3) Multicollinearity tends to increase the variances of the regression coefficients, which ultimatety
results in a more unstable prediction equation.

Multicollinearity should be addressed by the researcher prior to the execution of the regression,
analysis. The simplest method for diagnosing. mﬁcdlme&ﬁmmmmmchﬁmmmm_ior
the predictor variables, laoking for moderate to high-intercorrelations. However, it is preferable to use

one of two statistical methods to assess multicollinearity. First, tolerance statistics tai or
gach IV. Tolerance is a measure of collinearity among IVs, where possible values range fromOto 1. A
value for tolerance close to zero is an indication of muiticollinearity. Typi ; erves as

the cutoff point—if the tolerance value for a given IV is legs than 0.1, multicollinearity is a distin__gf
ProblE (Norusis, 1998).” A second method is to examine values for thewarignce inflation factor for
each predictor. The variance inflation factor (VIF) for a given predictor “indicates whether there exists
a strong linear association between it and afl remaining predictors” (Stevens, 1992). The VIF is defined
by the quantity 1/(1-R?) and is obtainable on most computer programs. Although there is no steadfast
rule of thumb,\walucs £ VIE that are. greater than. 10 are geticrally cause-for-concern. (Stevens, 1992)

There are several methods for combating multicollinearity in a regression analysis; two of the
most straightforward are presented here. The simplest method is to delete the problematic variable from
the analysis (Sprinthall, 2000). If the information in one variable is being “captured” by another, no real
information is being lost by deleting one of them. A second approach is to combine the variables in-
volved so as to create a single measure that addresses a single construct, thus deleting the repetition
(Stevens, 1992). One might consider this approach for variables with intercorrelations of .80 or higher.
Several other approaches to dealing with multicollinear relationships exist, but they are beyond the
scope of this text. If interested, the reader is advised to pursue the discussion in Stevens (1992).

A third issue of great importance in multiple regression is the method of specifying the regres-
fion model; in other words, determining or selecting a good set of pmdﬁm\anéﬂmgﬁ_@:
that the goal of any analysis should be fo achieve a parsimonions SoIaton, W Want 1o Select [Vs that
will give us an efficient regression equation without inctuding “everything under the sun.” Initially, one
of the most efficient methods of selecting a group of predictors is to rely on the researcher’s substantive
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Chapter 7 Multiple Regression

knowledge (Stevens, 1992). Being familiar with and knowledgeable about your population, sample, and
%, data will provide you with meaningful information about the relationships among variables and the

\'\' =~ likely predictive power of a set of predictors. Furthermore, for reasons we will discuss_later, a recom-

mended ratio of subjects to IVs (ie., n/k) W provide a reliable regression equation
(Wée?ﬁlg the Hiitrer of predictor variables low tends to improve this ratio, since most

researchers do not have the huxury of increasing their sample size at will, which would be necessary if

one were to continue to add predictors to the equation,

Once a set of predictors has been selected, there are several methods by which they may be in-

corporated into the regression analysis and subsequent equation. Tabachnick and Fidell (1996) identify
three such strategies: standard multiple regression, sequential multiple regression, and stepwise multiple
regression. (The reader should recall—and possibly revisit—the discussion of standérd and sequential
analyses as presented in Chapter 1.) It should be noted that decisions about model specification can and
do affect the nature of the research questions being investigated. In standard multiple regression, all
IVs are entered into the analysis simultaneously. The effect of each IV on the DV is assessed as if it had
been entered into the equation after all other IVs had been entered.” Each IV is then evaluated in terms
of what it adds to the prediction of the DV, as specified by the regression equation (Tabachnick & Fi-
dell, 1996).

Sequential multiple regression, sometimes referred to as hierarchical multiple regression, a

fesearcher may want to examine the influence of several predictor IVs in a specific order. Using this

approach, the resgar&%gﬁes the order in which variables Wﬂ@e
knowledge, as previously cntioned, may lead the researcher 16 Believe that one variable may be more

ial than others in the set of predictors and that variable is entered into the analysis first. Subse-

quent variables are then added in order to determine the specific amount of variance they can account
for, above and beyond, what has been explained by any variables entered prior (Aron & Aron, 1999).

Individual effects are assessed at the point of entry of a given variable (Tabachnick & Fidell, 1996).

Finally, stepwise multiple regression, also sometimes referred to as statistical maultiple regres-

sion, is often used in studies that are exploratory in nature (Aron & Aron, 1999). The researcher may
have a large set of predictors and may want to determine which specific IVs make meaningful contriby-
tions to the overall prediction. There are essentially three variations of stepwise regression, listed and

described betow:
(1) Forward selection — The bivariate correlations among all IVs and the DV are calculated. The

@

IV that has the } highest-Correlation with the DV iy entered-inte-the-analysis. first, It is assessed
in terms of its contribution (in terms of R%) to the DV. The next variable to be entered into the
analysis is the IV that contributes most to the prediction of the DV, after partialing out the ef-
fects of the first variable. This effect is measured by the increase in R? (AR?) due to the second
variable. This process continues until, at some point, predictor variables stop making signifi-
cant contributions to the prediction of the DV. It js important to remember that once variable
has been entered into the analysis, it remains there (Stevens, 1992; Pedhazur, 1982).

Stepwise selection — Stepwise selection is a variation of forward selection. It is an improve-
ment over the previous method in that, at each step, tests are performed to determine the sig-
nificance of each IV already in the equation as if it were to enter last. In other words, if a vari-
able entered into the analysis is measuring much of the same construct as another, this re-
assessment may determine that the first variable to enter may no longer contribute anything to
the overall analysis, In this procedure, that variable would then be dropped out of the analysis.
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Chapter 7 Muitiple Regression

Even though it was at one time a “good” predictor, in conjunction with others, it may no longer
S€rve as a substantial contribytor (Pedhazur, 1982).

(3) Backward deletion — The initial step here is to compute an equation with all predictors in-
cluded. Then, a significance test (a partial F-test) is conducted for every predictor, as if each
were entered last, in order to determine the leve] of contribution to overall prediction. The
smallest partial F is compared to a preselected “F to remove” value. If the value is less than the
“F to remove” value (not significant), that predictor is removed from the analysis and a new

It is important to note that both sequenti wise approaches to i i iS-

tinct advantage over foh—one variable is added at a time and each is continu-
checked for signi i diction. However, the important difference between

d adds variables based on some theory or plan by the

ageession, those degisions are being.made by.a computer based solely
1999). Seéquential regression should be used in research based on

A fourth issue of consequence in multiple regression is that of model validation, sometimes
called mq s-validation. A regression equation is developed in order to be able to predict DV val-

no generalizability (Stevens, 1992). If the equation is niot predicting well for other samples, it is not ful-
filling its designed and intended purpose. ' _
In order to obtain a reliable equation, substantial consideration must be given to the sample size
() and the number of predictors (k). As mentioned carlier, a recommended ratio of these two factors is
aboy sabiccts fouses seR-predictor St_evens, 1992). This results in a equation that will crgm—,yahd,gtg

sion equation (Tatsuoka, 1988). This is not always feasible, so an alternative would be to split the origi-
nal sample into two “subsamples.” Then one subsample can be used to develop the equation, while the
other is used to cross-validate it (Stevens, 1992). Of course, this would only be feagible if one had a
large enough sample, based on the criteria set forth above.

A fina] issue of importance in regression is the effect that outliers can have on a regression solu- -
tion. Recall that regression is essentially a maximization procedure (i.e., we are tryi maximize the
correlation between o i scores). Beggggggitbis,fact,-Jnlllﬁple,rcgrgﬁ.SiQ.ll,uc_ﬁn,.hgm.
Yery sensitive to extreme cases. One or two outliers have been shown to adversely affect the interpreta-
tion of regression analysis results (Stevens, 1992). 1t is therefore recommended that outliers be identi-
ﬁ“ﬂﬁ&altmmmprgpﬂatgly..gno;tg munning the regression analysis. This is w@ﬁg@aﬁﬁl‘iﬁé&

T S et e
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Chapter 7 Multiple Regression

by initial screenings of boxplots, but more precisely with the statistical procedure known as Mahalano-
}&S-dm#anee-(asﬂescrimPtc; 3).

One final note regarding multiple regression. There does exist a multivariate version of multiple
regression (i.e., multivariate multiple regression), but it is so similar in its approach and conduct that it
will not be discussed in detail in this text. Basically, multivariate multiple regression involves the pre-
diction of several DVs from a set of predictor IVs. This procedure is a variation of multiple regression
in that the regression equations realized are those that would be obtained if each DV were regressed
separately on the set of IVs. The actual correlations among DVs in the analysis are ignored (Stevens,
1992).

Sample Research Questions

Building on the example we began discussing in the previous section, we can now specify the
research questions to be addressed by our multiple regression analysis. The methods by which the re-
gression model is developed often dictates the type of research question(s) to be addressed. For exam-
ple, if we were entering all seven IVs from our data set into the model, the appropriate research ques-
tions would be:

"(1) Which of the seven predictor variables (i.e., percent urban population, GDP, birthrate, number
of hospital beds, number of doctors, number of radios, and number of telephones) are most in-
fluential in predicting female life expectancy? Are there any predictor variables that do not
contribute significantly to the prediction model?

(2) Does the obtained regression equation resulting from a set of seven predictor variables allow us
to reliably predict female life expectancy?

However, if we were using a stepwise method of specifying the model, the revised questions
would be:

(1) Which of the possible seven predictor variables (i.e., percent urban population, GDP, birthrate,
number of hospital beds, number of doctors, number of radios, and number of telephones) are
included in an equation for predicting female life expectancy?

(2) Does the obtained regression equation resulting from a subset of the seven predictor variables
allow us to reliably predict female life expectancy?

JEECTTZHV?ZJ?ziSSUﬂlPIT(UES/ﬂVI)ldelZAZTCUWS

In multiple regression, there are actually two sets of assumptions—assumptions about the raw
scale variables and assumptions about the residuals (Pedhazur, 1982). With respect to the raw scale
variables, the following conditions are assumed:

(1) The independent variables are fixed (i.e., the same values of the IVs would have 1o be used if the
study were to be replicated).

(2) The independent variables are measured without error.

(3)  The relationship between the independent variables and the dependent variable is linear (in other
words, the regression of the DV on the combination of IVs is linear).

The remaining assumptions concern the residuals. Recall again from Chapter 3 that residuals, or
prediction errors, are the portions of scores not accounted for by the multivariate analyses. Meeting
these assumptions is necessary in order to achieve the best linear estimations (Pedhazur, 1982). These
assumptions are:
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(4) The mean of the residuals for each observation on the dependent variable over many replications
is zero.

(5) Errors associated with any single observation on the dependent variable are independent of (i.e.,
not correlated with) errors associated with any other observation on the dependent variable,

(6) The errors are not correlated with the independent variables,

(7) The variance of the residuals across all values of the independent variables is constant (i.e., ho-
moscedasticity of the variance of the residuals).

(8) The errors are normally distributed.

Assumptions 1, 2, and 4 are largely research design issues. We will focus our attention on as-
sumptions 3, 5, and 6—which address the issue of linearity—and assumptions 7 and 8—which address
homoscedasticity and normality, respectively.

Methods of Testing Assumptions

There are essentially two approaches to testing the assumptions in multiple regression (Tabach-
nick & Fideli, 1996). The first approach involves the routine pre-analysis data screening procedures that
have been discussed in the preceding several chapters. As a reminder, linearity can be assessed through
examination of the various bivariate scatterplots. Normality is evaluated in similar fashion, as well as
through the assessment of the values for skewness, kurtosis, and Kolmogorov-Smirnov statistics, Fi-
nally, homoscedasticity is assessed by interpreting the results of Box’s M Test. |

The alternative approach to the routine procedure is to examine the residuals scatte lots. These
scatterplots resemble bivariate scatterplots in that they are plots of valuem&ﬁ%z of two
“variables”—in this case, these are the predicted values of the DV (¥) and the standardized residuals or
prediction errors (€). Examination of these residual scatterplots provides a test of a/l #hree of these cru-
cial assumptions (Tabachnick & F idell, 1996). If the assumptions of linearity, normality, and homosce-
dasticity are tenable; we would expect to see the points cluster along the horizontal line defined by A; =
0, in 2 somewhat rectangular pattern (see Figure 7.3).

Any systematic, differential patterns or clusters of points are an indication of possible model
violations (Tabachnick & Fidell, 1996; Stevens, 1992). Examples of residuals plots depicting violations
of the three assumptions are shown in Figure 7.4. (It is important to note that the plots shown in this
igure are idealized and have been constructed to show clear violations of assumptions. A word of cau-
tion—with real data, the patterns are seldom this obvious.) If the assumption of linearity js tenable. we
v ould cxpect to see a relatively straight line relaﬁfﬂimmwm&meMy

<Elllwmmwmck & Fidell, 19967 as-depicted in Figure 7.3. However, as shown in

Figure 7.4(a), the ponts obviously appear in a nonlinear pattern. In fact, this example is so extreme as
to depict a clearly curvilinear pattern. This is an unmistakable violation of the assumption of linearity.

If the assumption of n ity is defensible, we would expect istribution of

ints both above and belo;ﬂ%ﬂ}ié& by &=0. In Figure 7.4(b), there appears to be a clustering
of points the farther we move both above and belgw ‘that reference line, indicating a non-normal (in this
case, bimodal) distribution of residuals (Tate, 1992).

Finally, Figure 7.4(c) shows a violation of the assumption of homoscedasticity. If this assump-
tion is tenable, we would expect to see the points dispersed evenly about the reference line—again, de-
fined by &, = 0—across all predicted values for the DV. In Figure 7.4(c), notice that the width is very
harrow at small predicted values for the DV; however, the width increases rapidly as the predicted DV

value increases. This is a clear indication of heteroscedasticity, or a lack of constant variance.

——
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A A
Figure 7.3 Residuals Plot of Standardized Residuals (e;) Versus Predicted Values () When Assumptions
Are Met.

€;

A
Yi

Residuals scatterplots may be examined in Place of the routine pre-analysis data screening or
Jollowing those procedures (Tabachnick & Fidell, 1996). If examination of the residuals scatterplots is
conducted instead of the routine procedures—and if no violations are evident, no outliers exist, there are
sufficient number of cases, and there is no evidence of multicollinearity—then one can be safe in inter-
preting that single regression run on the computer. However, if the initial residuals scatterplots do not
look “clean,” then further data screening using the routine procedures is warranted (Tabachnick & Fi-
dell, 1996). In many cases, this may involve the transformation of one or more variables in order to
meet the assumptions. If a curvilinear pattern appears, one possible remedy is to use a polynomial (ie.,
nonlinear) model (Stevens, 1992), which is beyond the scope of this book. ‘

In cases that involve moderate violations of linearity and homoscedasticity, one should be aware
that these violations merely weaken the regression analysis, but do not invalidate it (Tabachnick & Fi-
dell, 1996). Furthermore, moderate violations of the normality assumption may often be ignored—
especially with larger sample sizes—since there are no adverse effects on the analysis (Tate, 1992). 1t
may still be possible to proceed with the analysis, depending on the subjective judgments of the re-
searcher. Unfortunately, however, there are no rules to explicitly define that which constitutes a “mod-
erate” violation. In reality, we would probably be justified in expecting some slight departures from the
“ideal” situation, as depicted in Figure 7.3, due to sampling fluctuations (Tate, 1992).

174



Chapter 7 Multiple Regression

Figure 7.4  Residuals Plots Showing Violations of (a) Linearity, (b) Normality, and

(c) Homoscedasticity.
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SECTION 7.3 PROCESS AND LoGrc

The Logic Behind Multiple Regression

You will recall from your previous exposure to simple regression that the statistical calculations
basically involve the determination of the constants ¢ and 5. The slope of the line (i.e., b) is first calcu-
lated by multiplying the correlation coefficient between X and ¥—recall we discussed earlier in this
chapter the important role played by the correlation between X and Y—Dby the standard deviation of ¥
and dividing that term by the standard deviation of X:

b= _(r)(S_Di (Equation 7.4)
(SDy)

The constant a (the Y-intercept) is then calculated in the following manner:

a=Y-bx (Equation 7.5)

There are analogous equations for the multivariate regression situation, although they appear
slightly more ominoufs and, therefore, will not be shown here. Recall fro 10 that in multiple
Jegression there are af Jeast two regression coefficients (specifically, the slopt? co§fﬁcients B; and B))

at must be calculated. The calculations mirror Equation 7.4; the onl is that they
~incorporate a concept known as partial correlation. Partial correlation is 2 measure of the relationship

%yetwe_gx_ygp}y @_ndDVih_qIﬂggwaj‘l,o“thif\L ;@Bﬁstant. For example, the calculated value for B tells us

The other main calculation in multi le regression is the detenninatipn of the value for d its
associated significance test. Rmaﬂﬂ%mmmmd for in the DV by the pre-

dictors. One can think of this as being similar to analysis of variance, in that we must partition the sum
of squares variability. regression analysis, we separate the total variability into variabil; d re-
gression (see Equation 7.6) and variabili about the regression, also kiiwii € sum of resid-
" et et el

~ual(see.Equation 7.7).

SSreg = Z(F:i~7 ¥ (Equation 7.6)
SSres = Z (i — §) (Equation 7.7)

= —— (Equation 7.8)
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The standard F-test from analysis of variance can be written making some simple algebraic sub-
stitutions:
Rk
F = (Equation 7.9)
A-R)/n-k- 1)

where kand # - k - 1 are the appropriate degrees of freedom for the numerator and denominator, respec-
tively (Stevens, 1992). From this point, the significance of the ghtai be tested using
the -test criteria. or by simply examinin. Mﬂg@&d@,_@u&ﬁom=¢hemnpumm§gyt.
_This then tells the researcher whether the set of IV predictor variables is accounting for, or explaining, a
statistically significant amount of variance i the V.~ T

AT o Grvag e R et

Interpretation of Results

Interpretation of multiple regression focuses on determining the adequacy of the regression
model(s) that has been developed. Conducting multiple regression typic ates output that can be
ivided i ; » and cogfficients. Our discussion on how to inter-
pret regression results will address these three parts. The first part of the regression output, model
summary, displays several multiple correlation mdices-—m%mﬁ), s_ggared.mﬂﬁp&@-
_relation (R?), and adjusted s i i0n (R} —all of which indicate how well an IV or
combination of IVs predicts the criterion variable (DV). The multi orrelation (R) is a Pearson corre-
lation coefficient between the predicted and actual scores of the DY, The squared multiple correlation
(R?) represents the degree of variance accounted for by the IV or combination of IVs, Unfo R
and R typically overesti ' onding population values especially with small samples; thus
R is calculated to t for such bias. Change in R? (AR?) is also calculated for each step and rep
resents the change in variance that js accounted for by the set of predictors once a new variable has be
added to the model, Change in R? js important since it is used to determine which variables significantly
~Contribute to the model, or in the case of a 5 ing method, which variables are added or x;empvﬁé..ffénﬂ i
the model. If 2 stepping method is used, the model summary will present these statistics for each mode]
or step that is generated. N

predicts the DV,
The final part of the output is the coef

s when the IV increases by 1

gifies a positive change in the DV.avhen the IV in-

ve change in the DV when the IV increases, Since it is

difficult to int ive | redictors when the slope weights are not standard-

~ized, beta weights (8) L or standardized regression coefficients are often utilized to create a prediction
ion for the standardized variables. Beta weights are based upon Z:mc&—walth—a-mem.ef_o_mm_vz’

standard deviation of 1. The coefficients table also presents 7 and p values, which indicate the signifi-

cance of the B weights, beta weights, and the subsequent part and partial correlation coefficients. Actu-
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ally, three correlation coefficients are displayed in the coefficients table. The zero-order correlation rep-
resents the bivariate correlation between the IV and DV. The partial correlation coefficient indicates the
relationship between the IV and DV after partialing out all other IVs. The part correlation, rarely used
when interpreting the output, represents the correlation between the DV and IVs after partialing onl
one of the I'Vs.

The final important statistic.in the.coefficient table is tolerance, which is ameasure of multicol-

linearity among the IVs. _Since the inclusion of IVs that are highly dependent upon each other can create
an erroneous regression model, determining which variables account for a high degree of common vari-

ance in the DV is critical. Tolerance is reporte all the I'Vs included and in the generated
‘_ﬁdﬂ]. This statistic represents the propartion of variance in a particular [V that is not exp

~lingar relationship with the other IVs. Tglegance ranges from 0 to 1, with.0.indicating.my ltigollinearity g™
* Typically, if tolérafice of an 1V is less thafi1, the regression procedure should be.repeased without the

Miolating IV,

As one can see, there is a lot to interpret when conducting multiple regression. Since tolerance
is an indicator of the appropriateness of TVs utilized in the regression, this statistic should be interpreted
first. If some IVs violate the tolerance criteria, regression should be conducted again without the violat-
ing variables. If the value for tolerance is acceptable, one should proceed with interpreting the model
summary, ANOVA table, and table of coefficients.

Let us now apply this process to our example. Since we will utilize the Forward stepping
method, our research question is more exploratory in nature: Which IVs (% urban population [urban];
gross domestic product per capita [gdp]; birthrate per 1,000 [birthrat]; hospital beds per 10,000 [Aosp-
bed]; doctors per 10,000 [docs]; radios per 100 [radio]; and phones per 100 [phone]) are predictors of
female life expectancy? Data were first screened for missing data and outliers and then examined for
test assumptions. Outliers were identified by calculating Mahalanobis distance in a preliminary Re-
gression procedure (see Chapter 3 for SPSS “How To”). Explore was then-conducted on the
newly generated Mahalanobis variable (mah_I) to determine which cases exceeded the chi square (i°)
criteria (See Figure 7.5). Using a chi square table, we found the critical value of chi square at p<.00]
with ¢/=8 to be 26.125. Case #83 exceeds this critical value and so was deleted from our analysis.
Linearity was then analyzed by creating a scatterplot matrix (see Figure 7.6). Scatterplots display
nonlinearity for the following variables: gdp, hospbed, docs, radio, and phone. These variables were
transformed by taking the natural log of each. The reader should note that the data set already includes
these transformations as Ingdp, Inbeds, Indocs, Inradio, and Inphone. A scatterplot matrix (see Figure
7.7) with the transformed variables displays elliptical shapes that indicate linearity and normality. Uni-
variate normality was also assessed by conducting Explore. Histograms and normality tests (see Fig-
ure 7.8) indicate some non-normal distributions; however, the distributions are not extreme. Multivari-
ate normality and homoscedasticity were examined through the generation of a residuals plot within an-
other preliminary Regression (see Chapter 3 for SPSS “How To”). The residuals plotis somewhat
scattered but again is not extreme (see Figure 7.9). Thus, multivariate normality and homoscedasticity
will be assumed.

Regression was then conducted using the Forward method. The three major parts of the
output—model summary, ANOVA table, and coefficient table—are presented in Figures 7.10 —7.12,
respectively. Tolerance among the IVs is adequate since coefficients for all IVs included and excluded
are above .1 (see Figure 7.12). Since the Forward method was utilized, only some of the IVs were en-
tered into the model. The model summary (see Figure 7.10) indicates that three of the seven IVs were
entered into the model. For the first step, Inphone was entered as it accounted for the most unique vari-
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ance in the DV (R?=.800). The variables of birthrat and Indocs were entered in the next two steps, re-

spectively, creating a model that accounted for 86.9% of the variance in female life expectancy. The

ANOVA table (see Figure 7.1 1) presents the F-test for each step/model. The final model significantly

predicts the DV, F(3, 102)=226.50, p<.001. The table of coefficients (see Figure 7.12) is then utilized

to create a prediction equation for the DV. The following equation is generated using the B weights.
Female life expectancy = 2.245 Xpphone - 241 Xyiriras + 2.1 T2 X ndnes + 68.159

If we utilize the beta weights, we develop the following equation for predicting the standardized DV,
Zremale e expectancy = 394 Zinphone - 288 Z pirirar + 306 Zindocs

Bivariate and partial correlation coefficients should also be noted-in the coefficients table,

Figure 7.5 Outliers for Mahalanobis Distance.

Extreme Values

Case
Number Value
MAH_1 Highest 1 83 | 36.89903 4§' Case #83 exceeds
2 72 | 20.98981 2 critical valye,
3 19 | 18.35770
4 99 | 18.26913
5 81 | 17.51827
Lowest 1 26 2.41654
2 107 | 2.96129
3 102 | 3.26488
4 108 | 3.37951
5 6 | 3.38166
Writing Up Results

The summary of multiple regression results should always include a description of how vari-
ables have been transformed or cases deleted. Typically, descriptive statistics (e.g., correlation matrix,

-means and standard deviations for each variable) are presented in tables unless only a few variables are

analyzed. The reader should note that our example of a results summary will not include these descrip-
tive statistics due to space limitations. The overall regression results are summarized in the narrative by
identifying the variables in the model: R, R, F and p values with degrees of freedom. If a step ap-
proach has been utilized, you may want to report each step (B2, Rzadj, R? change, and level of signifi-
cance for change) within a table. Finally, you may want to report the B weight, beta weight, bivariate
correlation coefficients, and partial correlation coefficients of the predictors with the DV in a table. If
you do not present these coefficients in a table, you may want to report the prediction equation, either
standardized or unstandardized. The following results statement applies the results presented in F igures
7.10-17.12.

Forward multiple regression was conducted to determine which independent variables (% urban
population [urben); gross domestic preduct per capita [gdp]; birthrate per 1,000 [birthrate]; hos-
pital beds per 10,000 [beds]; doctors per 10,000 [docs]; radios per 100 [radios]; and phones per
100 [phones]) were the predictors of fermale life expectancy. Data screening led to the elimina-
tion of one case. Evaluation of linearity led to the natural log transformation of gdp, beds, docs,
radios, and phones. Regression results indicate an overall model of three predictors (phone,
birthrate, and docs) that significantly predict female life expectancy, R*= 869, R%.4=.866, F(3,
102,)=226.50, p<.001. This model accounted for 86.9% of variance in female life expectancy.
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A summary of the regression model is presented in Table 1. In addition, bivariate and partial
correlation coefficients between each predictor and the dependent variable are presented in Ta-
ble 2.

Table 1 Model Summary

Step R Rz Rz adj ARZ F, chg P dfl d.ﬁ
1. Phones 894 .800 798 .800 416.03 <.001 1 104
2. Birthrate 921 .849 846 .049 33.52 <.001 1 103
3. Doctors 932 869 .866 .020 15.92 <.001 1 102

Table 2 Coefficients for Final Model

B B t Bivariate r Partial r
Phones per 100 2.245 394 5.078* .894 449
Birthrate per 1,000 —241 —.288 —4.263* -.861 -.389
Doctors per 10,000 2.172 306 3.990% .881 367

Note: * Indicates significance at p<.001.

Figure 7.6 Scatterplot Matrix for Original IVs and DV.

eopl

Phones per 1;;
Female |ife expectan
Review plots of
bottom row for

relationships with
DV. Several
relationships are
curvilinear.

P be B N B | |
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Figure 7.7 Scatterplot Matrix of Transformed IVs with DV

Natural
(=] a
Plots display more
Natural | elliptical shapes—
r representative of
linearity and nor-
- Natural | maity.

Natural | gne

Female fife expectan

Figure 7.8 Test of Normality.

Tests of Normality

Kolmogorov-Smirnov®

Statistic df Sig.
URBAN .089 107 .037
LNGDP .096 107 .016
BIRTHRAT 132 107 000
LNBEDS 059 107 200 Indicates that et
LNDOCS 138 107 .000 distributions are
LNRADIO 092 107 .026 fan-nomal.
LNPHONE 087 107 047

. This is a lower bound of the true significance.,
a. Lilliefors Significance Correction
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Figure 7.9 Residuals Plot.

Scatterplot
Dependent Variable: Female life expectancy 1992
3
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Figure 7.10 Mode! Summary Table for Female Life Expectancy.
Model Summan#
Std. Error Cheange Statistics : !
Adjusted of the R Square Sig. F
Model R R Square | R Square | Estimate Change |F Change df1 df2 Change
1 Boee 800 798 198 800 | 416.027 1 102 2000
2 921b 848 845 4.34 049 | 33518 1 103 000
3 93¢ 869 .86 4.06 .020 15.919 1 102 .000

Represents each
step in the model
building.

4 2 Predictors: (Constant), LNPHONE
b. Predictors: (Constant), LNPHONE, BIRTHRAT
C- Predictors: (Constant), LNPHONE, BIRTHRAT, LNDOCS
d. Dependent Variable: LIFEEXPF
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Figure 7.11 ANOVA Summary Table.

ANOVAd
Sum of Mean

lodel Squares df Square F Sig.

:A Regression 102‘:‘99.784 1 10239,784 416,027 .0007
Residual 2574,782 104 24,758
Total 12874.566 105

2 Regression {10931.921 2 | 5465.960 | 289.808 .000b
Residual 1942.645 103 18.861
Total 12874.566 105

3 Regression [11194.184 3 | 3731.395 | [226.497 .000¢
Residual 1680.382 102 16.474 \
Total 12874.566 105

a. Predictors: (Constant), LNPHONE
b. Predictors: {Constant), LNPHONE, BIRTHRAT

€. Predictors: (Constant), LNPHONE, BIRTHRAT, LNDOCS :;gffnfgg ;;'iﬂst the
d. Dependent Variable: LIFEEXPF significant in pre-
dicting the DV,

SECTION 7.4 SAMPLE STUDY AND ANALYSIS

(gdp); birthrate per 1,000 (birthrat); hospital beds per 10,000 (hospbed); doctors per 10,000
(docs); radios per 100 (radios); and phones per 100 (phones)] predict male life expectancy?
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Figure 7.12 Coefficients Tables for Variables Included and Excluded from Model.

Coefficlents®
Standardi
zed
Unstandardized Coefficien
Coefficients bi:] Correlations Colh'nearig Statistics
| Model B Std. Error Beta £ Sig. Zero-order | Partial Part Tolerance VIF
1 (Constant) 60.513 585 103.493 .000
LNPHONE 5.102 250 894 20.397 .000 894 .894 .894 1.000 1.000
2 (Constant) 72,700 2.166 33.564 .000
LNPHONE 3284 .383 576 8.583 2000 Bad 646 329 326 3.070
BIRTHRAT =325 056 -.388 -5.789 000 ~.861 -495 =222 326 3.070
3 (Constant) 6B.159 2.322 29.349 .000
LNPHONE 2.245 442 394 5.078 .000 884 449 .182 213 4.696
BIRTHRAT T-.241 .056 -.288 k -4.263 .000 -.861 -.388 =152 281 3.565
LNDOCS 2172 544 306 3.900 000 881 367 143 218 4,502
2. Dependent Variabie LIFEEXPF
; Coefficlents used Tolerance statistics
i vy oed fo develop a re- should be greater
sion equation, f%rresszg:;zulza:;n than 1.
variables.
Excluded Variables!
/Collinearity Statistics
Partial Minimum
Model Beta In t Sig. Correlation | Telerance VIF Tolerance
1 LNBEDS .0aga 1.431 155 140 409 2444 409
LNGDP -0222 -.166 .868 -.016 112 8.927 112
LNRADIO 0678 1.043 .299 102 466 2.144 466
LNDOCS .42g2 5.564 .000 481 253 3.956 .253
BIRTHRAT -.388% -5.789 .000 -495 326 3.070 326
URBAN .0962 1.267 .208 124 335 2.984 335
2 LNBEDS .017b 274 .785 027 .386 2.587 259
LNGDP -.159b -1.372 173 -.135 108 9.293 103
LNRADIO .043b 759 450 075 464 2.156 250
LNDOCS 3060 3.990 .000 367 218 4.592 213
URBAN .103b 1,566 121 .153 335 2.985 .195
3 LNBEDS .013¢ 229 519 .023 .386 2.588 184
LNGDP -.153¢ -1.412 161 -.139 108 9.295 | 8,728E-02
LNRADIO .047¢ 800 370 .089 464 2.157 176
URBAN .003° .049 .961 .005 280 3.573 175

A. Predictors in the Model: (Constant), LNPHONE
b. Pradictors in the Model: (Constant), LNPHONE, BIRTHRAT

€. Predictors in the Model: {Constant), LNPHONE, BIRTHRAT, LNDOCS

d. Dependent Variable: LIFEEXPF
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ure 7.17). Thus, multivariate normality and homoscedasticity will be assumed. Multiple Regression
was then conducted using the Enter method. See the section on SPSS “How To” for more details on
how to generate the following output,

Figure 7.13 Outliers for Mabhalanobis Distance,

Extreme Values

Case
Number Value
MAH_1 “Highest 1 67 | 50.81753
2 72 | 27.23509 >§I Outliers exceed y2
3 69 | 26.69299 critical value.
4 108 | 2567930
5 83 | 21.00443
Lowest 1 21 1.18032
2 40 1.29138
3 87 1.59614
4 53 1.73529
5 25 1.81816

Output and Interpretation of Results

Figures 7.18 — 7.20 present the three primary parts of regression output: model summary,
ANOVA table, coefficients table. Review of the tolerance statistics presented in the coefficients table
(see Figure 7.20) indicate that all but one of the IVs were tolerated in the model. The model summary
(see Figure 7.18) and the ANOVA summary (see Figure 7.19) indicate that the overall model! of the
Seven IVs significantly predicts male life expectancy, R*=.845, R?,,=834, F(7, 96,5=74.69, p<.001.
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nificance of the model predicting male life expectancy is much lower since all seven variables were en-

tered into the model.

Figure 7.14 Scatterplot Matrix of Original IVs with DV.

Male Iikz‘ expectancy

Figure 7.15 Scatterplot Matrix of Transformed IVs with DV.
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