Psy 633:  Linear Regression

If our question is simply whether two (or more) things are related, we run a correlation to find out:

But often we want to know more than simply whether two (or more) variables are related.   Often we’d like to be able to predict a person’s score on one variable, given that we know her score on one or more other variables.  To do that, we use an equation for the prediction in the form of Y = bX + a.

Y is often called the “criterion,” and it represents the score we want to predict.  X is the predictor:  given X, we can predict what Y probably will be.  Of the other two values, “b” represents the slope of the line that is represented by the equation, and “a” represents a constant value that indicates where the line would cross the Y-axis if X were 0.   This line is the same as the one we often see in a scatterplot when studying a correlation.
We use a statistical procedure called “linear regression” to figure out the values for “a” and “b” in the foregoing equation.  Specifically, we use the method of least squares to find an equation where the predicted Y-values are as close as possible to the actual Y-values.  The resulting line is called the “best fitting” solution, since it is the line that is, on average, closest to the true Y-values we want to predict.
Note the emphasis on “linear” in the foregoing.  As you know, many relations of interest to social scientists are NOT linear, so the foregoing does not work well for those relations.  It only works for relations that actually are linear.
The issue in prediction is to find an estimate of a particular score that is as close to that score as possible.
Consider the situation when we have only one variable of interest – a univariate distribution of scores.

What is the “best guess” predictor of any particular score in a univariate distribution?  The mean, since it is, on average, closer to all of the scores than is any other predictor.  But nevertheless, it’s usually rather far away from a few scores, so it isn’t a great predictor for them. 
How can we improve our prediction?  By having a second set of scores that are highly correlated with the scores we want to predict.  We can use these other scores as predictors and usually the prediction will be much more accurate.  That is, the predicted Y-score will be much closer to the actual Y-score that it is when we use the mean as the predictor. 
Note that the foregoing said “highly correlated.”  Higher correlations lead to more accurate predictions.  Lower correlations lead to less accurate predictions. 
 

In statistical terms, we say that the distance between an actual Y-score and the predicted Y-score is

ya – yp . This is called “error.”  We’d like to make that difference, that “error,” as small as possible.  The method for minimizing the size of the error is called the “least squares method.”  That is, we square each of the ya – yp differences, and then add the squared values.  This gives us the “total squared error.”  We want to make that total as small as possible, hence the overall procedure is called the “least squares method.”  If we have a situation where ya = yp in every case, then our predictions are always perfectly accurate, and the size of the error is 0.  The only relation which can produce this 0-value is a perfect correlation.
Most of the time we don’t have a perfect correlation so the error is almost always larger than 0.  We’d like to have a measure of an “average” error, similar to the standard deviation that we have for univariate distributions.  This measure is called "standard error of estimate" (SEE).   It represents the average distance of Y-values from their corresponding predictions (Y’).  Thus it tells us how much difference, on average, there will be between our predicted scores and the actual scores.  Small error = higher accuracy in prediction. Small error is directly related to higher correlation values.  Large error = lower accuracy in prediction, and is directly related to lower correlation values.  
