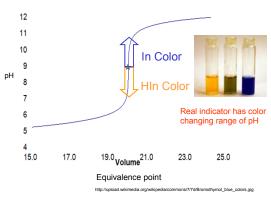

Acid – Base Titrations

Perfect Acid-Base Indicator

Acid-base indicators:

The materials used as indicators in acid- base titrations are, very weak organic acids or bases.


The conjugate pair of such compounds. exhibit different colors.

 $\begin{array}{c} Hln + H_2O \Longrightarrow ln^- + H_3O^+ \\ acid & base \\ color & color \end{array}$

 $\begin{array}{ccc} \ln + \mathrm{H_2O} & \longrightarrow & \ln\mathrm{H^+} + \mathrm{HO^-} \\ \mathrm{base} & & \mathrm{acid} \\ \mathrm{color} & & \mathrm{color} \end{array}$

⇔ pK_{HIn}

Perfect Acid-Base Indicator

 $HIn + H_2O = In^- + H_3O^+$

If HIn is in an acidic solution it exists mainly as Hin; color of Hin = acid color.

If HIn is in a basic solution, it exists mainly as In; color of In^2 = base color.

[In⁻][H⁺] [HIn] $[H^*] = K_{a,ln} \frac{[Hln]}{[ln^*]}$

During the acid base titration [H⁺] changes, i.e. pH changes (low \leftrightarrow high); and the pH varies rapidly at the end point.

As the pH changes rapidly the quotient in the latter equation should change rapidly as well. Thus the ratio,

[HIn] [In⁻]

will change rapidly, giving a color change. It is a finite ratio.

For the human eye to detect a color change, the ratio $\frac{[Hln]}{[ln^{\cdot}]}$

must change by at least 100 times (up or down).

$$[\mathsf{H}^*] = \mathsf{K}_{\mathsf{a}} \frac{[\mathsf{H}\mathsf{In}]}{[\mathsf{In}^-]}$$

: [H⁺] must change <u>at least</u> by 100 fold to detect a color change.

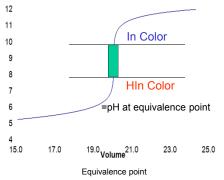
i.e. pH = (-log[H+]); must change by 2 at the eq. pt.

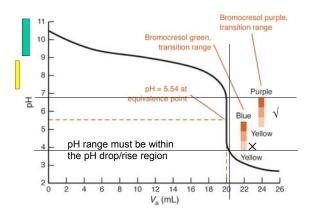
If ind. is in an acidic solution it exists mainly as Hin; color = acid color. (ratio =10, minimum)

If ind. is in a basic solution, it exists mainly as In; color = base color. (ratio = 0.1, minimum)

$$\begin{split} HIn + H_2O &= In^{-} + H_3O^{+} \\ K_{Hin} &= \frac{[In^{-}][H^{+}]}{[HIn]}; \\ [H^{+}] &= K_{Hin} \frac{[HIn]}{[In^{-}]} \\ pH &= pK_{Hin} + log \frac{[In^{-}]}{[HIn]} \\ pH & (acidic) &= pK_{HIn} + log(1/10) = pK_{HIn} - 1 \\ pH & (basic) &= pK_{Hin} + log(10) &= pK_{Hin} + 1 \end{split}$$

color change range = $pK_{Hin} \pm 1$ *pH range of indicator.*


This range can change with temperature, ionic strength, solvents, colloidal particles, etc.


Table 12-4 Common indicators

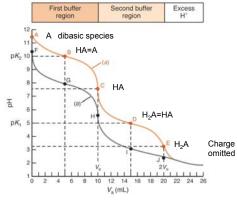
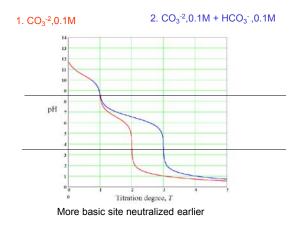
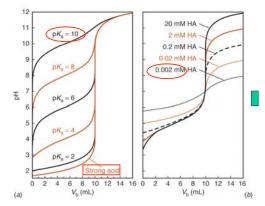

Indicator	Transition range (pH)	Acid color	Base color	Preparation
Methyl violet	0.0-1.6	Yellow	Violet	0.05 wt % in H ₂ O
Cresol red	0.2-1.8	Red	Yellow	0.1 g in 26.2 mL 0.01 M NaOH. Then add ~225 mL H ₂ O.
Thymol blue	1.2-2.8	Red	Yellow	0.1 g in 21.5 mL 0.01 M NaOH. Then add ~225 mL H ₂ O.
Cresol purple	1.2-2.8	Red	Yellow	0.1 g in 26.2 mL 0.01 M NaOH. Then add ~225 mL H ₂ O.
Erythrosine, disodium	2.2-3.6	Orange	Red	0.1 wt % in H_2O
Methyl orange	3.1-4.4	Red	Yellow	0.01 wt % in H ₂ O
Congo red	3.0-5.0	Violet	Red	0.1 wt % in H ₂ O
Ethyl orange	3.4-4.8	Red	Yellow	0.1 wt % in H ₂ O
Bromocresol green	3.8-5.4	Yellow	Blue	0.1 g in 14.3 mL 0.01 M NaOH. Then add225 mL H ₂ O.
Methyl red	4.8-6.0	Red	Yellow	0.02 g in 60 mL ethanol. Then add 40 mL H ₂ O.
Chlorophenol red	4.8-6.4	Yellow	Red	0.1 g in 23.6 mL 0.01 M NaOH. Then add -225 mL H,O.
Bromocresol purple	5.2-6.8	Yellow	Purple	0.1 g in 18.5 mL 0.01 M NaOH. Then add ~225 mL H ₂ O.

Table 12-4 (continued)	Common indicators				
Indicator	Transition range (pH)	Acid color	Base color	Preparation	
p-Nitrophenol	5.6-7.6	Colorless	Yellow	0.1 wt % in H,O	
Litmus	5.0-8.0	Red	Blue	0.1 wt % in H,O	
Bromothymol blue	6.0-7.6	Yellow	Blue	0.1 g in 16.0 mL 0.01 M NaOH. Then add -225 mL H ₂ O.	
Phenol red	6.4-8.0	Yellow	Red	0.1 g in 28.2 mL 0.01 M NaOH. Then add ~225 mL H ₂ O.	
Neutral red	6.8-8.0	Red	Yellow	0.01 g in 50 mL ethanol. Then add 50 mL H ₂ O.	
Cresol red	7.2-8.8	Yellow	Red	See above.	
a-Naphtholphthalein	7_3-8.7	Pink	Green	0.1 g in 50 mL ethanol. Then add 50 mL H ₂ O.	
Cresol purple	7.6-9.2	Yellow	Purple	See above.	
Thymol blue	8.0-9.6	Yellow	Blue	See above.	
Phenolphthalein	8.0-9.6	Colorless	Red	0.05 g in 50 mL ethanol. Then add 50 mL H ₂ O.	
Thymolphthalein	8.3-10.5	Colorless	Blue	0.04 g in 50 mL ethanol. Then add 50 mL H ₂ O.	
Alizarin yellow	10.1-12.0	Yellow	Orange-red	0.01 wt % in H ₂ O	
Nitramine	10.8-13.0	Colorless	Orange-brown	0.1 g in 70 mL ethanol. Then add 30 mL H ₂ O.	
Tropaeolin O	11.1-12.7	Yellow	Orange	0.1 wt % in H,O	


Ideal Acid-Base Indicator $\mathsf{pK}_{\mathsf{HIn}}$



More basic site neutralized earlier in the reaction.

Stronger acid/base, higher concentrations ~ sharper end points

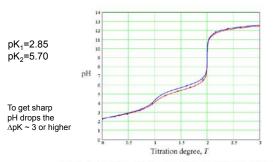


Figure 3. Titration of malonic acid with KOH: (a) without consideration of activity coefficients (blue curve), (b) with consideration of activity coefficients (red curve), and (c) experimental data (crosses).

Chem. Educator 2002, 7, 339.346

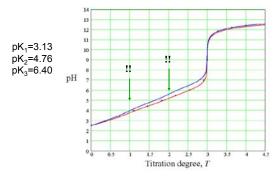
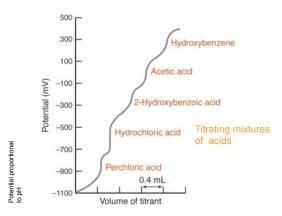
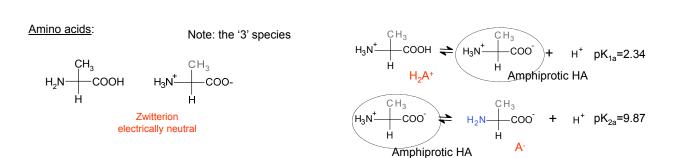
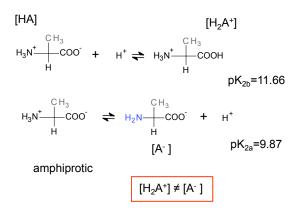
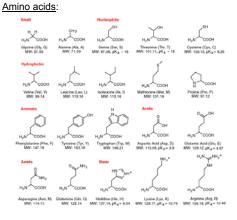





Figure 4. Titration of citric acid with KOH: (a) without consideration of activity coefficients (blue curve), (b) with consideration of activity coefficients (red curve), and (c) experimental data (crosses). *Chem. Educator* 2002, 7, 339.346

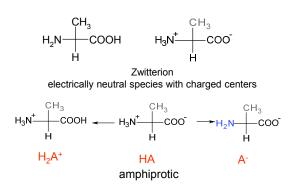
Isoionic point (pH): pH of <u>pure</u> neutral amino acid (neutral zwitterion) in aqueous solution.

A solution of **pure amino acid (HA**) is amphiprotic. The pH of such an amphiprotic species of formal concentration **F** is given by;

$$H_{3}N^{*} \stackrel{CH_{3}}{\underset{H}{\longrightarrow}} coo^{-} \qquad [H^{*}] = \sqrt{\frac{K_{1a}K_{2a}F + K_{1a}K_{w}}{K_{1a} + F}}$$


Note: $[H_2A^+] \neq [A^-]$, in general; with $[H^+]$ from above eq. they can be calculated using the pK_a values of H_2A^+ .

Note: no approximations here!!


Equations for the calculation of pH at Isoionic point:

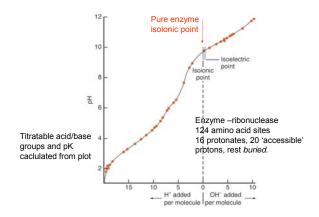
MB: $C_{HA} = [H_2A^+] + [HA] + [A^-]$

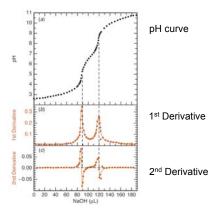
CB
$$[H^+] + [H_2A^+] = [OH^-] + [A^-]$$

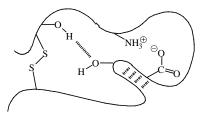
Amino acids:

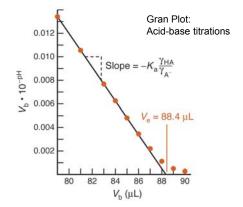
Isoelectric point (pH): pH at which <u>average</u> charge of the polyprotic acid is zero.

i.e. $[H_2A^+] = [A^-]$, because zwitterion/amphiprotic species is neutral.


Eg. For alanine of 0.10M (isotonic, pure alanine);


[H₂A⁺]= 1.68×10⁻⁵, [A⁻]= 1.76×10⁻⁵


So, needed to add a little acid to the 0.10 M solution of pure alanine to bring to the isoelectric point.


Calculation of Isoelectric point of an amino acid:

$$[H_2A^+] = \frac{[HA][H^+]}{K_{1a}}$$

