Atomic Spectroscopy

Atomic spectroscopy measures the spectra of elements
in their atomic/ionized states.

Atomic spectrometry, exploits quantized electronic transitions
characteristic of each individual element in their atomic or ionic
state.

Transitions occur in the UV, VIS and NIR regions of the
electromagnetic spectrum.
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In AA absorption and emission spectral profiles are very narrow.

It is valence electronic transitions of atoms/ions that is being
exploited.

This requires each atom to be isolated from all others, so the
transitions are not perturbed by neighboring atoms or by
bonding effects.

Otherwise the resulting spectra are representative more of
molecules or molecular fragments than of atoms themselves.

Atomic spectral profiles are very narrow.
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No vibrational or rotational quantization in atoms

or their ions. Therefore lines from individual atomic species
rarely overlap with one another. Thus broadening due to
overlap of adjacent transitions do not exist.
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Sample: salts- element existing as ions or compounds
where the element of interest is bonded.

Sample must be decomposed to the greatest extent possible
into its constituent atoms/ions. Ideally, this atomization step
should be quantitative; there should be no residual bonding
in the gas-phase ‘atomic’ cloud.

Atomization of analytes start with the sample nebulization
(spraying) process.



(a) Sample atomization
Flame in the heat source

Burner

Nebulizer
1To drain
aspiration

The suction caused by high flow rates of oxidant gas - Venturi effect.

Once formed, droplets in the nebulized spray are sent into a
high-temperature environment such as a (chemical) flame or
flowing rare-gas plasma - ICP.

Nebulization serves to increase the surface area of the solution

sample, so solvent evaporation (desolvation) can proceed
more rapidly and so the resulting dried solute particles can be
volatilized better. (flame atomic absorption, flame emission,
and plasma emission spectrometry).

The environment in the ‘flames’ often hot enough that
many of the atoms that are formed exist as positive ions.

Also, the environment in these atomization sources is
energetic to yield sufficient population in the

exited state, strong emission from either the free atoms or

their ionic counterparts.

For each atomic/ionic species the population distribution

can be calculated using the Boltzmann’s Law, n,, n, excited and
ground state populations, respectively:

—-AE
Ny _Qugrr

n 9
.\

Statistical weighings

mixing

lTo drain

Larger drops

Solution impinging on the bead aerosolizes the sample.

In the flame; de-solvation and solute-particle vaporization takes
place, the resulting vapor converted more or less efficiently into

free atoms.
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Large flame T makes power of the exponential term —0,
despite high AE; makes n, (excited state) significant making
AES possible, from the radiative decay of the excited states.
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with the ‘blank’.

Atomic Spectral lines are sharp (narrow).
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The source is unique. The narrow band width of the spectral
absorption/(emission) lines precludes the employment of
broad band source-monochromator combination to irradiate
the sample.

The irradiating beam must be comparable or narrower band-
width to that of the absorption profile.

The strategy is to use the emission lines of high intensity from
the element of interest. This is accomplished in HCLs.
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At low pressure and applied high voltage a discharge is
created.

Discharge ionizes the inert atoms, ionized particles
accelerated toward electrodes. High energy particles
sputter atoms and ions into gas phase.

lons and atoms are exited by high energy particle impact.

As they relax, they produce radiation of the same frequency
of analyte of interest.



Helium Emission Spectrum
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Spectral Line widths (absorption or emission) Monochromator

The AA line profile is broadened due to three factors: [ S( bandwidth S |
1. Natural Decay leads to natural broadening 7\ (~100x greater than 4
tomic lines

2. leads to
Where T is temperature and M is atomic mass.
T 2
Av(Hz) ~ (7.0><10’7)V\/i @ Bandwidth of
M i‘E’ absorption line

Bandwidth of
hollow-cathode
lamp emission

3. Pressure broadening due to collisions. Collisions lowers
the excited state life time thus broadens the spectral line.

The sample is at a higher temperature than the HCL.
Therefore they will have two different profiles due to
different broadening.

Wavelength

Background in Atomic Spectroscopy is significant.
Background signal should be accounted for in analysis. The significant background makes the usefulness of the pure

absorbance value for calculations erroneous.

1.2~
i it The background arises due to;
09 1. scattering of the HCL light beam, mainly from the sample
matrix; tends to reduce the power of the beam reaching

¥ Fe the detector (false absorbance, P).

2. emissions from sample molecular species and from the
fuel component emissions, generally broad spectral
emissions; tends to increase the power reaching the

detector (false Py) .
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Correction for the background emission is an essential
feature in atomic spectroscopy.

) T N Y N TN T T T N TN T T T |
247.5 248.0 248.5 249.0 249.5
Wavelength (nm)




Background correction methods:

Beam chopping: Simple method to produce alternate current.

Deuterium lamp: Use D, lamp to simulate the background
intensity.

Smith-Hieftie: Run HCL at high and low currents to produce
different emission profiles of the lamp. First run lamp at low
current measure absorbance of analyte and background.
Then lamp is pulsed with a high current. During the pulse,
the analyte absorbance is reduced but not to zero.

Most of absorbance is due to background.

Zeeman Background Correction: A magnetic field is used to
split the degenerate energy levels. Under the field the

species absorb polarized light only. This difference is exploited.
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Ap, for all practical purposes is due to background.
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is negligible. D, beam power loss is mainly due to
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Smith-Hieftje Background correction: Conceptually similar to
D, correction (which uses a broad spectral band). Broad band is
generated from the HCL itself.

HCL at high currents produce a wide emission spectral line.

Thus alternating the current density through the HCI
(modulation), to account for the background (absorbance at high
current density) and measure line absorbance and background
(absorbance at low current density) makes the correction
possible
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Zeeman Background Correction

[ Polarization w.r.t. B

o n o

Triplet

Interaction with
B polarized light:
n absorbs light

if polarized parallel
to the B.

v V-V v vHdy o absorbs light
if polarized normal
One peak three peaks to the B.

No absorption by = component

Note: polarized radiation used.

Variation

12— Field on
1.2T

Relative signal

L0 Abackground
I T ) Y
+0.024 +0.012 0 -0.012 -0.024
Relative wavelength (nm)

Better in principle not
in practice.

When atoms are subjected to a B, the light component
polarized parallel to B is absorbed by the atoms, but the light
component polarized normal to B is hardly absorbed.

The background contribution to absorption of light remains
unchanged, however, from the any polarized light.

Measuring the power of light parallel to B and normal to B
measured at the same wave length the background absorption
can be excluded; subtraction of signals of these two components
the background component can be excluded.
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Introducing a sample also introduces a matrix that will form
a partially burnt ashy material. Such material blocks the
light path and interfere with absorption measurements.
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Oxidant-Fuel Combinations

Oxidant Fuel Maximum Temp C
Air Acetylene 2250
Nitrous oxide Acetylene 2955
Air Coal gas 1825
Air Propane 1725
Air Hydrogen 2045
Entrained air/Ar Hydrogen 1577
Oxygen Natural gas 2740
Oxygen Hydrogen 2677
Oxygen Cyanogen 4500

Fuel Background:

Interference from partially oxidized fuel molecules

Air-acetylene
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Interferences:

Spectral interference: overlap of analyte signals from other
elements. Select a different line to monitor.

Emission from N,0-C,H, flame
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FIGURE 5.5 Emission spectrum of 8 mitrous oxide acetylene flame
|From E E Pickett and S. R. Koirtyohann. Anal Chem., 41(18)37A
(1969) Copsright by the American Chemicaf Society )

Chemical interference:

Reduction of atomization because of the formation of
non-volatile salts; in the presence of sulfates, phosphates.

Use a complexing agent (protecting agent, EDTA, 8HQ)
to protect the ion.

Add La*® (releasing agent) because LaPO, more stable, frees
other atoms such as Ca?* nonvolatile salts.

Use of fuel rich flame minimizes ionization, increase atom
population.

High temperatures make ion population significant however,
increase ion population.



lonization Interference:

Often encountered with easily ionizable elements (alkali
metals). lonization very high, making atom population low.

Reverse equilibrium by adding an ionization suppressor
(buffer), e.g. CsCI (1000ppm).

M(g) =M"(g) + e(9)
M]le]
M]

K=

An ionization buffer is a salt of an alkali metal (easily ionizable).
lonization of alkali metals yields a higher electron density which
would shift the ionization equilibrium of analyte M* to form
atoms.

Improving excited state species

M (g) —— M7 (g) — M7 (g)+ hv

Buffer against chemical interference

with P, Al, Si for Calcium (10g/I high
My pure La3* added to blank, standard
and samples ) or use of a N,O/C,H,
flame (hotter).

e.g. MY = CaSO4 or CaPO4.

association

+ Releasing Agent

79
% M (9)
lonization interference is e'?],'
possible - ionization buffer for s&/b
Potassium (1g/l high pure CsCl %
— added to blank, standard and
samples) M + hy

Internal Standards (IS) in Quantitative Analysis:

An internal standard is a known amount of a compound,
different from analyte, that is added to the ‘unknown’ sample.

Signal from analyte is compared with signal from the internal
standard to find out how much analyte is present.

This method is especially useful for analyses where the
quantity of sample and/or the instrument response varies
slightly from run to run for reasons beyond control.

Because the concentration of internal standard known, the
correct concentration of analyte can be determined.

Effect of lonization buffer on Atom population
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Internal standards are widely used in chromatography,
spectroscopy because the small quantity of sample solution

injected into the chromatograph is not very reproducible in

experiments.

In AA the flame instability creates situations of
non-reproducibility.

In cases where detector response vary with time form a good
situation to use IS.

Internal standards are also desirable when sample loss can
occur during sample preparation steps prior to analysis.
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If a known quantity of standard is added to the ‘unknown’ prior
to any manipulations, the signal ratio of standard to analyte
remains constant because the same fraction of each is lost in
any operation

For a known (concentration) mixture(s) of an internal standard
and analyte the measured the relative response of the
detector to the two species, F;

Analyte signal E [X]

IS signal [S]
Ac_ X

s [
—X=F m+ b
As 8]

[X] and [S] are the concentrations of analyte and IS
after they have been mixed together.

Once F is established, use the same relationship above
for where an the unknown and the IS are present to calculate
the concentration of the unknown.
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