Complexometric Titrations

Most <u>metal ions</u> form very stable <u>complexes</u> (K_i >>1) readily with reagents having <u>electron donor groups</u> (ligands). The number of coordinate bonds formed with ligands equals the coordination number of metal ion in that complex.

Uni-dentate:

$$Cu^{2+} + 4 : NH_3 = Cu(NH_3)_4^{2+}$$

 $Cu(H_2O)_6^{2+} + 4 : NH_3 = Cu(NH_3)_4(H_2O)_2^{2+}$

A multi-step process, as many molecules are bonded sequentially. Formation constant values differ and decreases with the increasing number 'steps' of formation.

 K_{f}

The complexes form when;

- 1. The central atom (metal) accepts an electron pair(s) from one or more ligands.
- 2. The ligand possesses at least one electron pair to donate.
- Bonding (coordinate covalent bonding) occurs between the metal ion and the ligand.

A number of common anionic and molecular ligands that can form complexes are:

<u>Anionic ligands</u> include halides, SCN¹⁻, CN¹⁻, OH¹⁻, RCOO¹⁻, S²⁻, C₂O₄²⁻ (oxalate), etc.

<u>Molecular ligands</u> include water, ammonia, RNH_2 (amines) C_5H_5N (pyridine) $H_2NCH_2CH_2NH_2$ (ethylenediamine), etc.

Complexes where M⁺ⁿ forms *more than one bond* per ligand (*<u>multidentate</u>*) are termed <u>chelates</u>, e.g. bidentate ligand (glycine) forms a "<u>chelate ring</u>."

As titrants for measuring metal ions, multidentate ligands are preferred (less number of 'steps' to form the complex), larger K_f values, giving sharper end/equivalence points.

Chelate Effect:

K_{f, chelate} >> K_{f,monodentate}

Driving force of chelation: Entropy effect - entropy gain (more disordered product side) is higher for reactions involving multidentate ligands, chelates, compared to those with monodentate ligands.

$$\begin{array}{c} Cd(H_2O)_{6}^{+2} + 4(CH_3)_2NH \rightarrow Cd(H_2O)_2((CH_3)_2NH)_{4}^{+2} + 4H_2O\\ 1 & 4 & 1 & 4\\ K_t = 3 \times 10^6\\ Cd(H_2O)_{6}^{+2} + 2en \rightarrow Cd(H_2O)_2(en)_{2}^{+2} + 4H_2O\\ 1 & 2 & 1 & 4\\ en = H_2NCH_2CH_2NH_2 & K_t = 2 \times 10^{10} \end{array}$$

NTA Nitrilotriacetic acid

Ethylenediaminetetraacetic acid (also called ethylenedinitrilotetraacetic acid)

Diethylenetriaminepentaacetic acid

DCTA trans-1,2-Diaminocyclohexanetetraacetic acid

EDTA, H_4 Y, (tetraacetate ion, Y⁴) is a widely used chelating (hexadentate) ligand. <u>One step process</u>, i.e. no intermediate species.

Hexadentate EDTA generate the titration curves with sharp end points.

 $\begin{array}{c} Cd(H_2O)_6^{+2} + 4(CH_3)_2NH \rightarrow Cd(H_2O)_2((CH_3)_2NH)_4^{+2} + 4H_2O \\ 1 & 4 & 1 & 4 \\ K_f = 3 \times 10^6 \\ Cd(H_2O)_6^{+2} + 2en \rightarrow Cd(H_2O)_2(en)_2^{+2} + 4H_2O \\ 1 & 2 & 1 & 4 \\ K_f = 2 \times 10^{10} \\ Cd(H_2O)_6^{+2} + EDTA \rightarrow CdEDTA^{+2} + 6H_2O \\ 1 & 1 & 1 & 6 \\ K_f > 10^{16} \end{array}$

EDTA dissociation constants: weak acidity.

$H_4Y + H_2O$	= H ₃ Y ⁻ + H ⁺	$K_1 = 1.02 \times 10^{-2}$
H ₃ Y ¹⁻ + H ₂ O	$= H_2Y^2 + H^+$	$K_2 = 2.14 \times 10^{-3}$
$H_{2}^{Y^{2-}} + H_{2}^{-}O$	$= H\bar{Y}^{3-} + H^{1+}$	$K_3 = 6.92 \times 10^{-7}$
$H\bar{Y}^{3-} + H_2\bar{O}$	= Y ⁴⁻ + H ¹⁺	$K_4 = 5.50 \times 10^{-11}$

Further, it is insoluble. At pH~7, $[Y^4]$ - insignificant.

At pH >10; $[Y^{\text{-}4}]\,$ - significant, dominates. $Y^{\text{-}4}=\text{EDTA}^{\text{-}4}$

Fractional Composition

$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$			
pН	$\alpha_{Y^{4-}}$		
0	1.3×10^{-23}		
1	1.9×10^{-18}		
2	$3.3 imes 10^{-14}$		
3	2.6×10^{-11}		
4	3.8×10^{-9}		
5	3.7×10^{-7}		
6	2.3×10^{-5}		
7	5.0×10^{-4}		
8	5.6×10^{-3}		
9	5.4×10^{-2}		
10	0.36		
11	0.85		
12	0.98		
13	1.00		
14	1.00		

Generic reaction:

$$H_4Y + M^{+n} \rightleftharpoons MY^{+n-4} + 4H^+$$

$$K_{f}^{'} = \frac{[MY^{+n-4}][H^{+}]^{4}}{[H_{4}Y][M^{+n}]}$$

Effective $K'_f = f(pH)$ Conditional equilibrium constant.

Small [H+], large pH of medium; leads to large K_f.

The formation constant of EDTA complexes are pH dependent.

At buffer pH > 10, EDTA exists mostly in the Y^{-4} form.

(At lower pH, Y-4 combines with H+ ions, thus at low pH, Y-4 is in competition for H+ and metal ions.)

The affinity of different metal ions to Y^{4} is vastly different. Therefore for each ion there is a <u>minimum pH</u> needed for the formation of an analytically <u>satisfactory</u> complexation.

The minimum pH required to override the competition of Y^4 to protons and seek a given metal ion M^{+n} can be determined.

Functional/effective K'_f =f(pH)

Functional/effective K'_f =f(pH)

Functional/effective K'_f =f(pH)

Table 13-2 Formation constants for metal-EDTA complexes

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Ion	log K _f	Ion	log K _f	Ion	log K _f
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		Li ⁺	2.79	Mn ³⁺	25.3 (25°C)	Ce ³⁺	15.98
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		Na ⁺	1.66	Fe ³⁺	25.1	Pr3+	16.40
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	⇒	K+	0.8	Co3+	41.4 (25°C)	Nd ³⁺	16.61
$\begin{array}{llllllllllllllllllllllllllllllllllll$		Be ²⁺	9.2	Zr4+	29.5	Pm ³⁺	17.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Mg ²⁺	8.79	Hf ⁴⁺	29.5 ($\mu = 0.2$)	Sm ³⁺	17.14
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		Ca ²⁺	10.69	VO2+	18.8	Eu ³⁺	17.35
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Sr2+	8.73	VO ₂ ⁺	15.55	Gd ³⁺	17.37
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Ba ²⁺	7.86	Ag ⁺	7.32	Tb3+	17.93
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		Ra ²⁺	7.1	TI+	6.54	Dy ³⁺	18.30
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Sc3+	23.1	Pd ²⁺	18.5 (25°C,	Ho3+	18.62
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Y3+	18.09		$\mu = 0.2$	Er ³⁺	18.85
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		La ³⁺	15.50	Zn ²⁺	16.50	Tm ³⁺	19.32
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		V2+	12.7	Cd2+	16.46	Yb3+	19.51
$\begin{array}{llllllllllllllllllllllllllllllllllll$		Cr2+	13.6	Hg ²⁺	21.7	Lu ³⁺	19.83
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Mn ²⁺	13.87	Sn ²⁺	$18.3 (\mu = 0)$	Am3+	17.8 (25°C)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Fe ²⁺	14.32	Pb2+	18.04	Cm ³⁺	18.1 (25°C)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Co ²⁺	16.31	Al ³⁺	16.3	Bk ³⁺	18.5 (25°C)
$\begin{array}{ccccc} Cu^{2+} & 18.80 & In^{3+} & 25.0 & Th^{4+} & 23.2 \\ Ti^{3+} & 21.3 (25^{\circ}C) & Ti^{3+} & 37.8 (\mu=1.0) & U^{3+} & 25.8 \\ V^{3+} & 26.0 & Bi^{3+} & 27.8 & Np^{4+} & 24.6 (25^{\circ}C, \mu) \end{array}$		Ni ²⁺	18.62	Ga ³⁺	20.3	Cf3+	18.7 (25°C)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Cu ²⁺	18.80	In ³⁺	25.0	Th4+	23.2
V ³⁺ 26.0 Bi ³⁺ 27.8 Np ⁴⁺ 24.6 (25°C, µ		Ti ³⁺	21.3 (25°C)	T13+	$37.8 (\mu = 1.0)$	U4+	25.8
C-3+ 22.4		V3+	26.0	Bi3+	27.8	Np ⁴⁺	24.6 (25°C, μ = 1.0
Cr ²⁷ 23.4		Cr3+	23.4				

NOTE: The formation constant is the equilibrium constant for the r table apply at 20°C, and ionic strength 0.1 M, unless otherwise rs

SOURCE: A. E. Martell and R. M. Smith, Critical Stability Constants, Vol. 1 (New York: Plenum Press, 1974), no. 204–211.

Mg(II) and Ca(II) K'_{f} ; 6.16×10⁸, 4.8×10¹⁰ at pH = 10.

Titrated separately, Mg(II) and Ca(II) can be quantitated. Difference in K values does not permit analysis *for each ion separately* when in a mixture in *one* titration procedure. (because of the non-appearance of two sigmoids, one after another)

Total hardness (Ca(II) + Mg(II)) determination, feasible however.

The optimum pH for Ca(II) analysis is 10, but pH as low as 8 gives acceptable titration curves because of large K'_{f} .

Minimum pH required for quantification i.e. K sufficiently large.

At high pH (=10, basic) some M^{+n} ions <u>precipitate</u> as hydroxides, and in such cases direct titration is not possible.

Ex. Zn(II); Strategy - before buffering the solution add ammonia to form Zn(NH₃)₄⁺² complex ion, and titrate vs EDTA. $K_{zn-EDTA}^{-2} > K_{zn(NH3)4}^{+2}$.

However, this modification drastically changes the pZn value, shortening the pZn change at the end point, less sharper end point.

If K_f value is sufficiently large, affinity of Y^{4} for M^{+n} is significant, then even at pH=6 yields acceptable titration curves (Fe(III)).

Color Indicators for EDTA titrations:

Metal ion complexometric indicator – a weaker chelating agent than EDTA. e,.g. Eriochrome Black T. $(H_2 ln', type; may be used as an acid - base indicator, too)$

Eriochrome Black T

Color 1 Before end point

Just after end point

Table 13-3 Common metal ion indicators Color of free Color of metal						
Name	Structure	pK.	indicator	ion complex		
Eriochrome black T	-0,5-0H -N=N-0 05,6-7 NO ₂	$pK_2 = 6.3$ $pK_3 = 11.6$	H_ln ⁼ red Hln ²⁼ blue In ³⁼ orange	Wine red		
Calmagize	OH HO O-N=N-O-SO3 CH3 0428	$pK_2 = 8.1$ $pK_3 = 12.4$	H_ln ⁻ red Hln ²⁻ blue ln ³ orange	Wine red		
Marexide		$pK_2 = 9.2$ $pK_3 = 10.9$	H _a la" red-violet H _a la ³ " violet H _a la ³ " blue	Yellow (with Co ²⁺ , Ni ²⁺ , Co ²⁺); nd with Cz ²⁺		
Xylenol orange	$\overset{O,C}{\longrightarrow}\overset{O,C}{\longrightarrow}\overset{CH_1}{\longrightarrow}\overset{CH_2}{\longrightarrow}\overset{CH_3}{\longrightarrow}\overset{CH_3}{\longrightarrow}\overset{CH_3}{\longrightarrow}\overset{OC}{\overset{OC}{\longrightarrow}\overset{OC}{\overset{OC}{\overset}{\overset{OC}{\overset}{\overset{OC}{\overset}{\overset{OC}{\overset}{\overset{OC}{\overset}{\overset{OC}{\overset}{\overset{OC}{\overset}{\overset{OC}{\overset}{\overset{OC}{\overset}{\overset{OC}{\overset}{$	$pK_2 = 2.32$ $pK_3 = 2.85$ $pK_4 = 6.70$ $pK_5 =$ 10.47	H ₃ In ⁻ yellow H ₃ In ²⁻ yellow H ₃ In ³⁻ yellow H ₃ In ³⁻ violet HIn ³⁻ violet In ⁵⁻ violet	Red		
Pyrocatechol violet	OH OH SOS	$pK_1 = 0.2$ $pK_2 = 7.8$ $pK_3 = 9.8$ $pK_4 = 11.7$	Hala red Hala" yellow Hala?" violet Hin ³ red-purple	Blac		

<u>Types of EDTA titrations</u>: Direct titration: unknown M^{+n} + indicator (or ISE for M^{+n})

 \downarrow + buffer; titrate with std. EDTA

titrate (1 mol $M^{+n} = 1$ mol EDTA)

Sharpening of end point of Ca+2 vs EDTA:

- a. unknown Ca⁺²+indicator+trace of Mg⁺² ↓ + buffer; titrate with std. EDTA determine end point. V mL
- b. Indicator + trace of Mg⁺² (blank titration) ↓ +water +buffer; titrate with std. EDTA determine end point. V' mL

Volume for Ca(II) = (V-V') mL

possible because $K_{Mg(II)-EDTA} < K_{Ca(II)-EDTA}$

Back titration:

used when, a. suitable metal ion indicator not available.

b. M^{+n} and EDTA <u>reaction</u> is slow.

c. M⁺ⁿ forms ppt. at titration conditions.

unknown M⁺ⁿ + known excess vol. std. EDTA

 \downarrow + buffer; titrate unreacted EDTA vs std. Mg⁺² or std. Zn⁺²

find end point \Rightarrow unreacted EDTA.

Calculate EDTA consumed in the reaction vs M+n.

requirement: $[MgEDTA]^{-2}$ or $[ZnEDTA]^{-2}$ less stable Than the $[MEDTA]^{+n}$ complex.

Displacement reaction (use of an auxilliary agent MgY² or ZnY²:

Prepare MgY² (or ZnY²) solution (pH=10) Add exc. of MgY² to a measured vol. of unknown M⁺ⁿ solution. $(K_{Mg-Y} < K_{M-Y})$

 $\label{eq:MgY2} \begin{array}{l} \mathsf{MgY^2} + \mathsf{M^{+n}} = \mathsf{MY^{+n-2}} + \mathsf{Mg^{+2}} \\ & \mathsf{releases} \; \mathsf{Mg^{+2}} \; \mathsf{QUANTITATIVELY} \; (1:1) \end{array}$

titrate "freed" Mg^{+2} produced vs std. EDTA. (1mol M⁺ⁿ = 1mol Mg⁺²)

requirement: [MgEDTA]⁻² or [ZnEDTA]⁻² less stable than [MEDTA]⁺ⁿ complex.

Minimum pH required for quantification

Scope: Selectivity toward different metals is achieved by pH control.

Masking agents may be used to 'remove' interfering ions from the reaction sphere via formation of stable complexes with auxiliary ligand.

Minimum pH required for quantification