Redox Titrations

Net transfer of electrons during the reaction. Oxidation numbers of two/more species change.

Satisfies requirements for reactions in quantitation; a. large K $\,$ b. fast reaction

Balancing redox reactions:

- 1. identify the oxidation & reduction species and/processes.
- balance each of *them* separately for mass, then charge. (H⁺, OH⁻, H₂O may be needed to balance *for species containing O, H*)
- 3. multiply half reactions to make the number of electrons the same in both half reactions

$$Fe^{+2} = Fe^{+3} + e$$

$$MnO_{4}^{-} + 8H^{+} + 5e = Mn^{+2} + 4H_{2}O$$

$$MnO_{4}^{-} + 8H^{+} + 5Fe^{+2} = Mn^{+2} + 5Fe^{+3} + 4H_{2}O$$

Note the changes in oxidation number.

oxidizing agent, oxidant

$$\overset{\diamond}{\mathsf{Ce}^{+4}} + \overset{\mathsf{Fe}^{+2}}{\uparrow} = \overset{\mathsf{Ce}^{+3}}{\mathsf{Fe}^{+3}} + \overset{\mathsf{Fe}^{+3}}{\mathsf{Fe}^{+3}}$$

reducing agent, reductant \downarrow

$$MnO_{4}^{-} + 8H^{+} + 5Fe^{+2} = Mn^{+2} + 5Fe^{+3} + 4H_{2}O$$

oxidizing agent, oxidant

$\frac{\text{MnO}_4^{-} + \text{CH}_3\text{OH} + \text{H}^+ \rightarrow \text{Mn}^{+2} + \text{CO}_2}{\text{MnO}_4^{-} + 8\text{H}^+ + 5\text{e} \rightarrow \text{Mn}^{+2} + 4\text{H}_2\text{O}}$

 $\begin{array}{c} \mathsf{CH}_3\mathsf{OH}\to\mathsf{CO}_2\\ \hline \mathsf{H}_2\mathsf{O}+\mathsf{CH}_3\mathsf{OH}\to\mathsf{CO}_2\\ \mathsf{H}_2\mathsf{O}+\mathsf{CH}_3\mathsf{OH}\to\mathsf{CO}_2+\mathsf{6H}^*\end{array}$

 $H_2O+CH_3OH \rightarrow CO_2+6H^++6e$

 $(MnO_{4}^{-} + 8H^{+} + 5e \rightarrow Mn^{+2} + 4H_{2}O) \times 6$ $(H_{2}O + CH_{3}OH \rightarrow CO_{2} + 6H^{+} + 6e) \times 5$ $6MnO_{4}^{-} + 18H^{+} + 5CH_{3}OH \rightarrow 6Mn^{+2} + 19H_{2}O + 5CO_{2}$

$\bigstar MnO_4^{-} + CH_3OH + H^{+} \rightarrow Mn^{+2} + CO_2$

 $(H_2O + CH_3OH \rightarrow CO_2 + 6H^+ + 6e) \times 5$

 $6MnO_{4}^{-}+18H^{+}+5CH_{3}OH \rightarrow 6Mn^{+2}+19H_{2}O+5CO_{2}$

$$\begin{split} \mathsf{MnO}_4^\circ + 8\mathsf{H}^* + 5\mathsf{e} \to \mathsf{Mn}^{+2} + 4\mathsf{H}_2\mathsf{O} & \mathsf{Cu} + \mathsf{HNO}_3 & \longrightarrow \mathsf{Cu}(\mathsf{NO}_3)_2 + \mathsf{NO} + \mathsf{H}_2\mathsf{O} \\ \mathsf{CH}_3\mathsf{O}\mathsf{H} \to \mathsf{CO}_2 & \mathsf{Cu} \to \mathsf{Cu}^{+2} + 2\mathsf{e} \\ \mathsf{H}_2\mathsf{O} + \mathsf{CH}_3\mathsf{O}\mathsf{H} \to \mathsf{CO}_2 & \mathsf{H}^+ \\ \mathsf{H}_2\mathsf{O} + \mathsf{CH}_3\mathsf{O}\mathsf{H} \to \mathsf{CO}_2 + \mathsf{6}\mathsf{H}^+ & \mathsf{NO}_3^{-1} + 4\mathsf{H}^+ + 3\mathsf{e} & \longrightarrow \mathsf{NO} + 2\mathsf{H}_2\mathsf{O} \\ \end{split} \\ \mathsf{H}_2\mathsf{O} + \mathsf{CH}_3\mathsf{O}\mathsf{H} \to \mathsf{CO}_2 + \mathsf{6}\mathsf{H}^+ + \mathsf{6}\mathsf{e} & 3\mathsf{Cu} + 8\mathsf{HNO}_3 & \longrightarrow 3\mathsf{Cu}(\mathsf{NO}_3)_2 + 2\mathsf{NO} + 4\mathsf{H}_2\mathsf{O} \\ \mathsf{(MnO}_4^\circ + 8\mathsf{H}^+ + 5\mathsf{e} \to \mathsf{Mn}^{+2} + 4\mathsf{H}_2\mathsf{O}) \times \mathsf{6} & \mathsf{Note some nitrate ions are spectator ions.} \end{split}$$

Electrochemistry (Potentiometry - very abbreviated version):

Electrochemistry deals with reactions, where electrons exchange between species.

Oxidation-reduction reactions:

$$Ce^{+4} + Fe^{+2} = Ce^{+3} + Fe^{+3}$$

$$\uparrow \qquad \uparrow$$
reduced oxidized in the process
[O] [R]

 (\cdot)

SO_A²

If this reaction can be made to occur **at two s<u>ites</u>**, — Electrochemical cell.

 $E_{cell}(V)$

Baniell Cell

spontaneous, generates energy.

http://chemistry.about.com/library/weekly/aa082003a.htm

Cathode

 (\pm)

S04

 $Ce^{+4} + e = Ce^{+3}$

cathode

If a chemical species has a propensity to oxidize and

another to reduce, combination of them will result in

a redox reaction; reaction products - weaker oxidant/reductant.

oxidation @ anode and reduction @ cathode

Inherent propensity of a species to reduce is measured by their standard reduction potentials.

Note: A species that can be reduced easily (a propensity to be reduced) implies the reverse process, i.e. the oxidation is difficult.

Inherent ability to undergo reduction can be gleaned from the standard reduction potential values.

Standard (reduction) potential values of species are expressed referenced to standard proton reduction potential, i.e.

@ 25°C potential for $2H^{+}(aq, a=1) + e = H_2(g, p=1atm) E^0_{H^+/H^2} = 0.00V$

Electro	de potential	tables are	e Standard	Reduction	Potential
tables	and the half	reaction v	written as a	reduction.	

Acceptor Side	Donor Side	
Good Acceptors	Poor Donors	
$MnO_4^{+} 8H^{+} 5e^{-} =$	$Mn^{2+} + 4 \ \mathrm{H_2O}$	+1.51
$Cl_2(g) + 2e^{-g}$	2Cl ⁻	+1.359
$\mathrm{Cr_2O_7^{2-}} + 14\mathrm{H^+} + 6\mathrm{e^-} =$	$2Cr^{3+} + 7H_2O$	+1.33
$O_2 + 4H^+ + 4e^- =$	$2H_2O$	+1.229
$IO_3^- + 6H^+ + 5e^- =$	$1/2 I_2 + 3H_2O$	+1.195
$NO_3^{-} + 3H^{+} + 2e^{-} =$	$\mathrm{HNO}_{2} + \mathrm{H}_{2}\mathrm{O}$	+0.94
$Cu^{2+} + I^{-} + e^{-} =$	CuI	+0.86
$Ag^{+} + e^{-} =$	Ag	+0.799
$Fe^{3+} + e^{-} =$	Fe ²⁺	+0.771
$2 Hg Cl_4^{2-} + 2e^{-} =$	$Hg_2Cl_2(s) + 6Cl^2$	+0.69
$I_2(aq) + 2e^- =$	2I ⁻	+0.620
$I_3^{-} + 2e^{-} =$	31-	+0.536
$Cu^{2+} + 2e^{-} =$	Cu(s)	+0.337
$Hg_2Cl_2(s) + 2e^{-} =$	$2Hg + 2Cl^{-}$	+0.268
AgCl + e =	Ag + Cl-	+0.222

Construction of redox electrodes:

Standard electrodes

Inspect the half reaction, identify the species involved and their physical states.

Mix them up in solution, the activities of each species must be at their standard states (unity). If there are no 'species' that is metallic use a Pt wire (for electrical contact).

e.g.
$$MnO_4^{-} + 8H^{+} + 5e = Mn^{+2} + 4H_2O$$

Notation: $Mn^{+2}(a=1),MnO_4(a=1),H^+(a=1)/Pt$ Silver-silver chloride electrode:

$$AgCI(s) + e = Ag(s) + CI^{-}(aq)$$

Notation: Cl⁻(a=1)/AgCl(s)/Ag

Electrodes - non standard:

In non-standard electrodes the concentrations/activity of one or more of the species involved is <u>not</u> unity.

E° cell A measure of the inherent ability for reaction to occur

Consider the redox reaction

 $Fe^{+2} + Ce^{+4} = Fe^{+3} + Ce^{+3}$

Would this redox reaction occur spontaneously? How quantitative is this reaction (K=?)?

Calculate E_{cell}^0 for the reaction as written; if <u>positive - reaction</u> <u>occurs</u>; <u>spontaneous</u> and if large the K is large.

half reactions

$\mathrm{Fe}^{+2} = \mathrm{Fe}^{+3} + e$	anod	e	
$Ce^{+4} + e = Ce^{+3}$	catho	de	half reactions
$\mathbf{E}_{\rm cell}^0 = \mathbf{E}_{Ce^{+4}/Ce^{+3}}^0 - \mathbf{E}_{Ce^{+4}/Ce^{+3}}$	$F_{Fe^{+3}/Fe^{+2}}^{0}$	from tal	oles (reduction potentials)

<u>Prediction of the propensity to react, K</u>, related to free energy change,...

$$\begin{split} \Delta G^{o} &= -\text{RTInK} = \underbrace{\text{nFE}_{\text{call}}^{o}}_{\text{preduction.pot.}} \\ E^{o}_{\text{cell}} &= E^{o}_{\text{reduction.pot.}} + E^{o}_{\text{oxidation.pot.}} \\ & \text{cathode anode} \\ E^{o}_{\text{electrode}} & \text{tabulated as reduction potentials} \\ E^{o}_{\text{cell}} &= E^{o}_{\text{cathode}} - E^{o}_{\text{anode}} & (\text{from tables}) \end{split}$$

$$E_{cell}^{O} = E_{red.pocess}^{O} - E_{oxd.process}^{O}$$

<u>E°</u>cell

Consider the redox reaction

 $Fe^{+2} + Ce^{+4} = Fe^{+3} + Ce^{+3}$

 $Fe^{+2} = Fe^{+3} + e$ anode $Ce^{+4} + e = Ce^{+3}$ cathode

 $\mathsf{E}^{\mathsf{O}}_{\mathsf{cell}} = \mathsf{E}^{\mathsf{O}}_{\mathsf{red},\mathsf{pocess}} - \mathsf{E}^{\mathsf{O}}_{\mathsf{oxd},\mathsf{process}}$

 $E_{cell}^{O} = E_{cathode}^{O} - E_{anode}^{O}$

 $E_{cell}^{O} = E_{Ce^{+4}/Ce^{+3}}^{O} - E_{Fe^{+3}/Fe^{+2}}^{O}$ (from tables) = 1.720 - 0.771 = 0.949V

(Large and) positive E_{cell}^{o} processes are good candidates for redox titration reactions; larger E_{cell}^{o} gives <u>sharper</u> end points (large K values).

Electrode potential (in general); Nernst equation for electrode calculates the propensity for a reduction half reaction to occur when species are at a given set of concentrations. It is a measure of the *reducibility* of the species in solution.

Q = reaction quotient.

oxidized + ne = reduced

$$E_{el} = E_{el}^{0} - \frac{RT}{nF} ln \frac{a_{feduced}}{a_{oxidized}}$$

Note: Q for electrode is for the electrode reaction *written* as a reduction.

Q large for a system ~ E_{el} small (and or negative) implies poor electron acceptor/ implies good electron donor - reducing system (and vice versa)

For the reaction:
$$Ce^{+4} + Fe^{+2} = Ce^{+3} + Fe^{+2}$$

$$E_{cathode} = E_{Ce^{i4}/Ce^{i3}} = E_{Ce^{i4}/Ce^{i3}}^{0} - \frac{RT}{nF} ln \frac{a_{Ce^{i3}}}{a_{Ce^{i4}}}$$

$$E_{anode} = E_{Fe^{i3}/Fe^{i2}} = E_{Fe^{i3}/Fe^{i2}}^{0} - \frac{RT}{nF} ln \frac{a_{Fe^{i2}}}{a_{Fe^{i3}}}$$

Note Q for electrode is for the electrode reaction written as a reduction.

In potential calculated from any one of the two equations above are the same and is called the <u>solution redox potential</u>.

Only one equation is useful at a given instant for calculation, however.

During the titration the Q values change in a systematic manner.

$$\begin{split} \mathsf{E}_{\mathsf{Ce}^{+4}/\mathsf{Ce}^{+3}} &= \mathsf{E}_{\mathsf{Ce}^{+4}/\mathsf{Ce}^{+4}}^{0} - \frac{\mathsf{RT}}{\mathsf{nF}} \ln \frac{\mathsf{a}_{\mathsf{Ce}^{+3}}}{\mathsf{a}_{\mathsf{Ce}^{+4}}} \\ \mathsf{E}_{\mathsf{Fe}^{+3}/\mathsf{Fe}^{+2}} &= \mathsf{E}_{\mathsf{Fe}^{+3}/\mathsf{Fe}^{+2}}^{0} - \frac{\mathsf{RT}}{\mathsf{nF}} \ln \frac{\mathsf{a}_{\mathsf{Fe}^{+2}}}{\mathsf{a}_{\mathsf{Fe}^{+3}}} \end{split}$$

The solution potential calculated from the perspective of any of the two redox equilibria that exist in the system; is numerically the same.

Measuring the variation of the solution potential allows the monitoring of the progress of the reaction/titration.

To calculate the redox potential in the solution, consider the *appropriate* equilibrium system, it is one of the two equilibria and the one that can be easily handled, arithmetically (mathematically).

Potentials are calculated as reduction potentials (convention).

Need to write the equilibria as reduction equilibria,

e.g.
$$Fe^{+3} + e = Fe^{+2}$$

 $MnO_4^{-} + 8H^{+} + 5e = Mn^{+2} + 4H_2O$

Use Nernst equation.

Ce

Fe(II), Fe(III) Ce(III)

> The solution potential calculated from the perspective of of any redox equilibria that exist in the system is numerically the same.

$$MnO_{4}^{-} + 8H^{+} + 5Fe^{+2} = Mn^{+2} + 5Fe^{+3} + 4H_{2}O^{-}$$

$$Fe^{*2} = Fe^{*3} + e$$

MnO₄ + 8H⁺ + 5e = Mn⁺² + 4H₂O

12

Use Nernst equation.

$$Fe^{+3} + e = Fe^{+2}$$

$$MnO_{4}^{-} + 8H^{+} + 5e = Mn^{+2} + 4H_{2}O$$

Either,

$$\mathsf{E}_{\mathsf{F} \mathsf{e}^{*3} / \mathsf{F} \mathsf{e}^{*2}} = \mathsf{E}^{0}_{~~\mathsf{F} \mathsf{e}^{*3} / \mathsf{F} \mathsf{e}^{*2}} - \frac{\mathsf{RT}}{\mathsf{F}} \mathsf{In} \frac{\mathsf{a}_{\mathsf{F} \mathsf{e}^{*2}}}{\mathsf{a}_{\mathsf{F} \mathsf{a}^{*3}}}$$

or

$$\mathsf{E}_{\mathsf{MnO}_{4}^{-1}/\mathsf{Mn}^{+2}} = \mathsf{E}_{\mathsf{MnO}_{4}^{-1}/\mathsf{Mn}^{+2}}^{0} - \frac{\mathsf{RT}}{\mathsf{5F}}\mathsf{In}\frac{\mathsf{a}_{\mathsf{Mn}^{+2}}}{\mathsf{a}_{\mathsf{MnO}_{1}^{-1}}}^{\mathsf{a}_{\mathsf{H}^{+1}}} \mathsf{a}_{\mathsf{H}^{+1}}^{\mathsf{a}_{\mathsf{H}^{+1}}} \mathsf{a}_{\mathsf{H}^{+1}}^{\mathsf{a}_{\mathsf{H}^{+1}}}} \mathsf{a}_{\mathsf{H}^{+1}}^{\mathsf{a}_{\mathsf{H}^{+1}}} \mathsf{a}_{\mathsf{H}^{+1}}^{\mathsf{a}_{\mathsf{H}^{+1}}}} \mathsf{a}_{\mathsf{H}^{+1}}^{\mathsf{a}_{\mathsf{H}^{+1}}}} \mathsf{a}_{\mathsf{H}^{+1}}^{\mathsf{a}_{\mathsf{H}^{+1}}}} \mathsf{a}_{\mathsf{H}^{+1}}^{\mathsf{a}_{\mathsf{H}^{+1}}}} \mathsf{a}_{\mathsf{H}^{+1}}^{\mathsf{a}_{\mathsf{H}^{+1}}}} \mathsf{a}_{\mathsf{H}^{+1}}^{\mathsf{a}_{\mathsf{H}^{+1}}}^{\mathsf{a}_{\mathsf{H}^{+1}}}} \mathsf{a}_{\mathsf{H}^{+1}}^{\mathsf{a}_{\mathsf{H}^{+1}}}^{\mathsf{a}_{\mathsf{H}^{+1}}}} \mathsf{$$

 ${\rm E}_{\rm cell}$ measures the propensity of a (overall) reaction, where the species are at any given concentration.

$$\mathsf{E}_{\rm rxn} = \mathsf{E}_{\rm cell} = \mathsf{E}_{\rm cell}^{\rm o} - \frac{\mathsf{RT}}{\mathsf{nF}}\mathsf{ln}(\mathsf{Q})_{\rm cell}$$

Example 1.

 $MnO_{4}^{-}(a_{1}) + 8H^{+}(a_{2}) + 5Fe^{+2}(a_{3}) = Mn^{+2}(a_{4}) + 5Fe^{+3}(a_{5}) + 4H_{2}O$

$$\begin{split} \textbf{E}_{cell} &= \textbf{E}_{cell}^{0} - \frac{\textbf{RT}}{5\textbf{F}} \textbf{In} \Bigg(\frac{\textbf{a}_{Mn^{+2}}^{2} \textbf{a}_{Fe^{+3}}^{5}}{\textbf{a}_{MnO_{4}}^{8} \textbf{a}_{H^{+}}^{8} \textbf{a}_{Fe^{+2}}^{5}} \Bigg) \\ \textbf{E}_{cell} &= \textbf{E}_{cell}^{0} - \frac{\textbf{RT}}{5\textbf{F}} \textbf{In} \Bigg(\frac{\textbf{a}_{4}^{2} \textbf{a}_{5}^{5}}{\textbf{a}_{1} \textbf{a}_{2}^{3} \textbf{a}_{3}^{5}} \Bigg) \end{split}$$

Example 2

$$+ Fe^{+2} = Ce^{+3} + Fe^{+3}$$

$$E_{halfrxn} = E_{el} = E_{el}^{0} - \frac{RI}{nF} ln(Q)_{el}$$
$$E_{rxn} = E_{cell} = E_{cell}^{0} - \frac{RT}{nF} ln(Q)_{cell}$$

For the two half reactions, E_{el};

Ce⁺⁴

$$\mathsf{E}_{\mathsf{cathode}} = \mathsf{E}_{\mathsf{Ce}^{+4}/\mathsf{Ce}^{+3}} = \mathsf{E}_{\mathsf{Ce}^{+4}/\mathsf{Ce}^{+4}}^{0} - \frac{\mathsf{RT}}{\mathsf{nF}}\mathsf{In}\frac{\mathsf{a}_{\mathsf{Ce}^{+3}}}{\mathsf{a}_{\mathsf{Ce}^{+4}}}$$

$$\mathsf{E}_{anode} = \mathsf{E}_{\mathsf{Fe}^{+3}/\mathsf{Fe}^{+2}} = \mathsf{E}_{\mathsf{Fe}^{+3}/\mathsf{Fe}^{+2}}^{0} - \frac{\mathsf{RT}}{\mathsf{nF}}\mathsf{In}\frac{\mathsf{a}_{\mathsf{Fe}^{+2}}}{\mathsf{a}_{\mathsf{Fa}^{+3}}}$$

Pick the process (anodic/cathodic) to follow, judiciously.

Solution potential is determined by Q; changing Q changes the solution potential.

The reaction progress is followed by following the redox potential of the solution, which depends on Q, with an oxidation-reduction potential electrode.

Before eq. point
$$a_{Ce(IV)}$$
~ very small, 0; $\frac{a_{Fe^{+2}}}{a_{Fe^{+3}}}$ changes.

Indicator reaction

Ce(IV)

$$\mathsf{E}_{\mathsf{C}e^{i4}/\mathsf{C}e^{i3}} = \mathsf{E}_{\mathsf{C}e^{i4}/\mathsf{C}e^{i3}}^{0} - \frac{\mathsf{RT}}{\mathsf{nF}}\mathsf{ln}\frac{\mathsf{a}_{\mathsf{C}e^{i3}}}{\mathsf{a}_{\mathsf{C}e^{i4}}}$$

After eq. point $a_{Fe(II)}$ very small, ~0; $\frac{a_{Ce^{+3}}}{a_{Ce^{+4}}}$ changes.

$$Ce^{+4} + Fe^{+2} = Ce^{+3} + Fe^{+3}$$

<u>At the eq. point</u> $a_{Fe(II)}$, $a_{Ce(IV)}$ very small, ~0;

But,
$$\frac{a'_{Fe^{+2}}}{a'_{Fe^{+3}}} = \frac{a'_{Ce^{+4}}}{a'_{Ce^{+3}}}$$
 $Q a'_{Ce^{+3}} = a'_{Fe^{+3}}$
 $a'_{Ce^{+4}} = a'_{Fe^{+2}}$

a' concentrations of species at 'end point'

Considering the redox potential at eq. pt. from both perspectives

$$\begin{array}{c} & \longrightarrow \\ \mathsf{E}_{\mathsf{ep}} = \mathsf{E}_{\mathsf{Ce}^{\mathsf{i}4}/\mathsf{Ce}^{\mathsf{i}3}} = \mathsf{E}_{\mathsf{Ce}^{\mathsf{i}4}/\mathsf{Ce}^{\mathsf{i}3}}^{0} - \frac{\mathsf{RT}}{\mathsf{nF}} \mathsf{ln} \frac{\mathsf{a'}_{\mathsf{Ce}^{\mathsf{i}3}}}{\mathsf{a'}_{\mathsf{Ce}^{\mathsf{i}4}}} \\ \\ \mathsf{E}_{\mathsf{ep}} = \mathsf{E}_{\mathsf{Fe}^{\mathsf{i}3}/\mathsf{Fe}^{\mathsf{i}2}} = \mathsf{E}_{\mathsf{Fe}^{\mathsf{i}3}/\mathsf{Fe}^{\mathsf{i}2}}^{0} - \frac{\mathsf{RT}}{\mathsf{nF}} \mathsf{ln} \frac{\mathsf{a'}_{\mathsf{Fe}^{\mathsf{i}2}}}{\mathsf{a'}_{\mathsf{Fe}^{\mathsf{i}3}}} \end{array}$$

$Ce^{+4} + Fe^{+2} = Ce^{+3} + Fe^{+3}$

<u>At the eq. point</u> $a_{Fe(II)}$, $a_{Ce(IV)}$ very small, ~0;

a' concentrations of species at 'end point'

Considering the redox potential at eq. pt. from both perspectives

$$\longrightarrow E_{ep} = E_{Ce^{+4}/Ce^{+3}} = E_{Ce^{+4}/Ce^{+3}}^{0} - \frac{RT}{nF} ln \frac{a'_{Ce^{+3}}}{a'_{Ce^{+4}}}$$
$$E_{ep} = E_{Fe^{+3}/Fe^{+2}} = E_{Fe^{+3}/Fe^{+2}}^{0} - \frac{RT}{nF} ln \frac{a'_{Fe^{+2}}}{a'_{Fe^{+3}}}$$

n=1

$$Ce^{+4} + Fe^{+2} = Ce^{+3} + Fe^{+3}$$

$$a'_{Fe^{+3}} = a'_{Ce^{+3}}$$

 $a'_{Fe^{+2}} = a'_{Ce^{+4}}$

$$\frac{a'_{Fe^{+3}}}{a'_{Fe^{+3}}} \frac{a'_{Ce^{+4}}}{a'_{Ce^{+3}}}$$

$$\begin{split} \mathsf{E}_{ep} &= \mathsf{E}_{Ce^{+4}/Ce^{+3}} = \mathsf{E}_{Ce^{+4}/Ce^{+3}}^{0} - \frac{\mathsf{RT}}{\mathsf{nF}}\mathsf{ln}\frac{\mathsf{a'}_{Ce^{+3}}}{\mathsf{a'}_{Ce^{+4}}}\\ \mathsf{E}_{ep} &= \mathsf{E}_{Fe^{+3}/Fe^{+2}} = \mathsf{E}_{Fe^{+3}/Fe^{+2}}^{0} - \frac{\mathsf{RT}}{\mathsf{nF}}\mathsf{ln}\frac{\mathsf{a'}_{Fe^{+2}}}{\mathsf{a'}_{Fe^{+3}}} \end{split}$$

Adding the above two equations:

Solution potential at equivalence point.

$$\mathsf{E}_{ep} = \frac{\mathsf{E}_{Ce^{+4}/Ce^{+3}}^{0} + \mathsf{E}_{Fe^{+3}/Fe^{+2}}^{0}}{2}$$

In general, where $n_1 \neq n_2$;

$$\mathsf{E}_{\rm ep} = \frac{\mathsf{n}_1 \mathsf{E}_1^0 + \mathsf{n}_2 \mathsf{E}_2^0}{\mathsf{n}_1 + \mathsf{n}_2}$$

The potential of a single electrode is not measurable.

Only differences in potentials can be measured.

Thus a coupling of the 'sensor' electrode with a another electrode of known, unchanging potential is employed, - standard reference electrode

Note: The (reduction) potential of the solution is measured by coupling with a reference electrode, E_{ref} (which remains constant).

 $E_{cell} = E_{el} - E_{ref}$. (convention)

 $\rm E_{cell}$ varies in the same fashion as $\rm E_{el}$

In general, where reaction is not 1:1 and/or the reactions are pH dependent, calculate starting from Nernst Equation.

Study the hand out.

Comparison of titration curves with same titrant Ce⁺⁴(aq).

 E_{cell} change at end point higher if $|E_{totum}^o - E_{audrel}^o|$ is large. This is also a measure of the 'completeness' (i.e K) of the reaction.

Redox Indicators:

Substances that are reduced and oxidized reversibly, two forms have different colors. It must undergo reduction/ oxidation as well.

In the proximity of the end point, E_{eq} .

Must change by 100, at a minimum to detect end point visually. e.g. 0.1 to 10 or vice versa.

In the transition range solution potential measured as An electrode potential must change;

The range dictated as
$$E_{el} = \left[E_{lnd}^{O} \pm \frac{0.0592}{n} \right]$$

The indicator standard reduction potential must fall in the range above.

Table 16-2 Redox indicators

	Co		
Indicator	Oxidized	Reduced	E°
Phenosafranine	Red	Colorless	0.28
Indigo tetrasulfonate	Blue	Colorless	0.36
Methylene blue	Blue	Colorless	0.53
Diphenylamine	Violet	Colorless	0.75
4'-Ethoxy-2,4-diaminoazobenzene	Yellow	Red	0.76
Diphenylamine sulfonic acid	Red-violet	Colorless	0.85
Diphenylbenzidine sulfonic acid	Violet	Colorless	0.87
Tris(2,2'-bipyridine)iron	Pale blue	Red	1.120
Tris(1,10-phenanthroline)iron (ferroin)	Pale blue	Red	1.147
Tris(5-nitro-1,10-phenanthroline)iron	Pale blue	Red-violet	1.25
Tris(2,2'-bipyridine)ruthenium	Pale blue	Yellow	1.29

07	tidants		Reductants
BiO ₃ BrO ₃ Br ₂ Ce ⁴⁺	Bismuthate Bromate Bromine Ceric	но он он	Ascorbic acid (vitamin C)
CH ₃ -O-SO ₂ NCI-	Chloramine T	BH ₄ Cr ²⁺ S ₂ O ²⁻	Borohydride Chromous Dithionite
Cl ₂ ClO ₂	Chlorine Chlorine dioxide	Fe ²⁺ N ₂ H ₄	Ferrous Hydrazine
Cr ₂ O ₇ ²⁻ FeO ₂ ²⁻	Dichromate Ferrate(VI)	но-О-он	Hydroquinone
H ₂ O ₂ OCl	Hydrogen peroxide Hypochlorite	NH ₂ OH H ₃ PO ₂	Hydroxylamine Hypophosphorous acid
IO ₃	Iodate	H ₃ C CH ₃ CH ₃	СН ₃ СН ₂ ОН
I ₂	Iodine	СН3	Retinol (vitamin A)
Pb(acetate) ₄ HNO ₃ O	Lead(IV) acetate Nitric acid Atomic oxygen	Sn ²⁺ SO ²⁻	Stannous Sulfite
O3 HClO4	Ozone Perchloric acid	S2O3- CH	Thiosulfate
	Periodate Permanganate		$H_2 = \begin{pmatrix} CH_3 \\ I \\ CH_2 - CH_2 - CH - CH_2 \end{pmatrix}_3 - H_2$
3208	reroxydisulfate	H ₃ C CH ₃ CH ₃	H ₃ α-Tocopherol (vitamin E)

Other 'indicating' strategies:

Starch-Iodine complex - for reactions involving I2.

Self indicators – where one of the reactants is strongly colored, e.g. $\mathsf{KMnO}_4.$

Sample Preparation

Some analyte samples must be prepared for a redox titration.

Analyte must be present in the correct oxidation state.

e.g. For analyzing iron with a Sn^{2+} , a reducing titrant all the iron must be present as Fe^{3+} in order to be reduced to Fe^{2+} .

If some iron is already present as ${\sf Fe}^{2*},$ then it will not consume titrant and so escapes measurement.

Analyte must be pre-oxidized or pre-reduced to convert the analyte to a single oxidation state.

Adjusting oxidation states of analytes:

1. Change oxidation states (oxidation and reduction) by chemical reaction with excess of a pre-adjustment chemical agent.

2. Remove un-reacted chemical agent. (read text)

 $\begin{array}{l} \mbox{Examples:} \\ \mbox{Mn(II) to } \mbox{MnO}_4^- (\mbox{Ag}^{+2}) \\ \mbox{V(V) to } \mbox{V(IV) } (\mbox{H}_2 \mbox{SO}_3) \\ \mbox{Fe(III) to } \mbox{Fe(II) } (\mbox{SnCI}_2) \\ \mbox{Co(II) to } \mbox{Co(III) } (\mbox{H}_2 \mbox{O}_2) \end{array}$

CrCl₂ H₂S Zn/Hg (Jones reductor) Walden Reductor

Species analyzed	Oxidation reaction	Notes
Fe ²⁺	Fe ²⁺ ⇔ Fe ³⁺ + e ⁻	Fe ³⁺ is reduced to Fe ³⁺ with Sn ³⁺ or a Jones reductor. Titration is carried out in 1 M H ₂ SO ₄ or 1 M HCI containing Mn ³⁺ , H ₂ O ₄ , and H ₂ SO ₄ , Mn ²⁺ inhibits oxidation of Cl ⁻ by MnO ₄ , H ₂ O ₄ complexes Fe ³⁺ to prevent formation of yellow Fe ³⁺ -chhoride complexes.
H ₂ C ₂ O ₄	$\mathrm{H_2C_2O_4} \rightleftharpoons \mathrm{2CO_2} + \mathrm{2H^+} + 2\mathrm{e^-}$	Add 95% of titrant at 25°C, then complete titration at 55°-60°C.
Br ⁻	$\mathrm{Br}^- \rightleftharpoons \frac{1}{2} \mathrm{Br}_2(g) + \mathrm{e}^-$	Titrate in boiling 2 M H ₂ SO ₄ to remove Br ₂ (g).
H,O,	$H_2O_2 \rightleftharpoons O_2(g) + 2H^+ + 2e^-$	Titrate in 1 M H ₂ SO ₄ .
HÑO ₂	$\tilde{HNO}_2 + \tilde{H}_2O \rightleftharpoons NO_3^- + 3H^+ + 2e^-$	Add excess standard KMnO ₄ and back- titrate after 15 min at 40°C with Fe ²⁺ .
As ³⁺	$H_3AsO_3 + H_2O \rightleftharpoons H_3AsO_4 + 2H^+ + 2e^-$	Titrate in 1 M HCl with KI or ICl catalyst.
Sb ³⁺	$H_3SbO_3 + H_2O \Rightarrow H_3SbO_4 + 2H^+ + 2e^-$	Titrate in 2 M HCl.
Mo ³⁺	$\dot{Mo^{3+}} + 2H_2\dot{O} \rightleftharpoons MoO_2^{2+} + 4H^+ + 3e^-$	Reduce Mo in a Jones reductor, and run the Mo ³⁺ into excess Fe ³⁺ in 1 M H ₂ SO ₄ . Titrate the Fe ²⁺ formed.

Species analyzed	Oxidation reaction	Notes
W ³⁺	$W^{3+} + 2H_2O \Rightarrow WO_2^{2+} + 4H^+ + 3e^-$	Reduce W with Pb(Hg) at 50°C and titrate in 1 M HCl.
U ⁴⁺	$U^{4+} + 2H_2O \rightleftharpoons UO_2^{2+} + 4H^+ + 2e^-$	Reduce U to U^{3+} with a Jones reductor. Expose to air to produce U^{4+} , which is titrated in 1 M H ₂ SO ₄ .
Tī ³⁺	$TT^{3+} + H_2O \rightleftharpoons TTO^{2+} + 2H^+ + e^-$	Reduce Ti to Ti^{3+} with a Jones reductor, and run the Ti^{3+} into excess Fe^{3+} in 1 M H ₂ SO ₄ . Titrate the Fe^{2+} that is formed.
Mg ²⁺ , Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , Zn ²⁺ , Co ²⁺ , La ³⁺ , Th ⁴⁺ , Pb ²⁺ , Ce ³⁺ , BiO ⁺ , Ag ⁺	$H_2C_2O_4 \rightleftharpoons 2CO_2 + 2H^+ + 2e^-$	Precipitate the metal oxalate. Dissolve in acid and titrate the $H_2C_2O_4$.
S ₂ O ²	$S_2O_8^{-} + 2Fe^{2+} + 2H^+ \Rightarrow 2Fe^{3+} + 2HSO_4^{-}$	Peroxydisulfate is added to excess standard Fe^{2+} containing H_3PO_4 . Unreacted Fe^{2+} is titrated with MnO_4^- .
PO3-	$Mo^{3+} + 2H_2O \rightleftharpoons MoO_2^{2+} + 4H^+ + 3e^-$	$(NH_4)_3PO_4 \cdot 12MoO_3$ is precipitated and dissolved in H_2SO_4 . The Mo(VI) is reduced (as above) and titrated.

Species analyzed	Oxidation reaction	Notes
As ³⁺	$H_3AsO_3 + H_2O \Rightarrow H_3AsO_4 + 2H^+ + 2e^-$	Titrate directly in NaHCO ₃ solution with I ₃ .
Sn ²⁺	$SnCl_{4}^{2-} + 2Cl^{-} \Rightarrow SnCl_{6}^{2-} + 2e^{-}$	Sn(IV) is reduced to Sn(II) with granular Pb or Ni in 1 M HCl and titrated in the absence of oxygen.
N ₂ H ₄	$N_{a}H_{a} \rightleftharpoons N_{a} + 4H^{+} + 4e^{-}$	Titrate in NaHCO, solution.
sô ₂ *	$\hat{SO}_2 + H_2\hat{O} = H_2SO_3$ $H_2SO_3 + H_2O = SO_4^2 + 4H^+ + 2e^-$	Add SO ₂ (or H_2SO_3 or HSO_3^- or $SO_3^{(-)}$ to excess standard I_3^- in dilute acid and back-titrate unreacted I_3^- with standard thiosulfate.
H ₂ S	$H_2S \rightleftharpoons S(s) + 2H^+ + 2e^-$	Add H ₂ S to excess I ₃ in 1 M HCl and back-titrate with thiosulfate.
Zn ²⁺ , Cd ²⁺ , Hg ²⁺ , Pb ²⁺	$\begin{split} M^{2+} + \mathrm{H}_2 \mathrm{S} &\rightarrow \mathrm{MS}(s) + 2\mathrm{H}^+ \\ \mathrm{MS}(s) &\rightleftharpoons \mathrm{M}^{2+} + \mathrm{S} + 2\mathrm{e}^- \end{split}$	Precipitate and wash metal sulfide. Dissolve in 3 M HCl with excess standard I ₃ and back-titrate with thiosulfate.
Cysteine, glutathione, thioglycolic acid, mercaptoethanol	$2RSH \Rightarrow RSSR + 2H^+ + 2e^-$	Titrate the sulfhydryl compound at pH $4-5$ with $I_{\overline{3}}$.
HCN	$I_2 + HCN \rightleftharpoons ICN + I^- + H^+$	Titrate in carbonate-bicarbonate buffer, using p-xylene as an extraction indicator.
H ₂ C=O	$H_2CO + 3OH^- \Rightarrow HCO_2^- + 2H_2O + 2e^-$	Add excess I ₃ plus NaOH to the unknown. After 5 min, add HCl and back-titrate with thiosulfate.
Glucose (and other reducing sugars)		Add excess I_{3}^{-} plus NaOH to the sample. After 5 min, add HCl and back-titrate with thiosulfate.
Ascorbic acid (vitamin C)	Ascorbate + $H_2O \Rightarrow$ dehydroascorbate + $2H^*$ + $2e^-$	Titrate directly with 1_3^- .
H,PO,	$H_{1}PO_{1} + H_{2}O = H_{1}PO_{1} + 2H^{+} + 2e^{-}$	Titrate in NaHCO ₃ solution.

Table 16-5 Titration of I₃ produced by analyte (iodometric titrations)

Species analyzed	Reaction	Notes
Cl ₂	$CI_2 + 3I^- \rightleftharpoons 2CI^- + I_3^-$	Reaction in dilute acid.
HOCI	$HOCI + H^+ + 3I^- \Rightarrow CI^- + I_3^- + H_2O$	Reaction in 0.5 M H ₂ SO ₄ .
Br ₂	$Br_2 + 3I^- \rightleftharpoons 2Br^- + I_3^-$	Reaction in dilute acid.
BrO3	$BrO_{3}^{-} + 6H^{+} + 9I^{-} \Rightarrow Br^{-} + 3I_{3}^{-} + 3H_{2}O$	Reaction in 0.5 M H ₂ SO ₄ .
103	$2IO_3^- + 16I^- + 12H^+ \Rightarrow 6I_3^- + 6H_2O$	Reaction in 0.5 M HCl.
104	$2IO_4^- + 22I^- + 16H^+ \Rightarrow 8I_3^- + 8H_2O$	Reaction in 0.5 M HCl.
O ₂	$O_2 + 4Mn(OH)_2 + 2H_2O \Rightarrow 4Mn(OH)_3$ $2Mn(OH)_3 + 6H^+ + 6I^- \Rightarrow 2Mn^{2+} + 2I_3^- + 6H_2O$	The sample is treated with Mn ²⁺ , NaOH, and KI. After 1 min, it is acidified with H ₂ SO ₄ , and the I ₃ ⁻ is titrated.
H,O,	$H_2O_2 + 3I^- + 2H^+ \rightleftharpoons I_3^- + 2H_2O$	Reaction in 1 M H ₂ SO ₄ with NH ₄ MoO ₃ catalyst.
O ₃ ^a	$O_3 + 3I^- + 2H^+ \rightleftharpoons O_2 + I_3^- + H_2O$	O ₃ is passed through neutral 2 wt % KI solution. Add H ₂ SO ₄ and titrate.
NO ₂	$2HNO_2 + 2H^+ + 3I^- \rightleftharpoons 2NO + I_3^- + 2H_2O$	The nitric oxide is removed (by bubbling CO_2 generated in situ) prior to titration of I_3^- .
As5+	$H_3AsO_4 + 2H^+ + 3I^- \rightleftharpoons H_3AsO_3 + I_3^- + H_2O$	Reaction in 5 M HCl.
$S_2O_8^{2-}$	$S_2O_8^{-} + 3I^- \Rightarrow 2SO_4^{-} + I_5^-$	Reaction in neutral solution. Then acidify and titrate.
Cu ²⁺	$2Cu^{2+} + 5I^- \rightleftharpoons 2Cul(s) + I_3^-$	NH4HF2 is used as a buffer.
Fe(CN)2-	$2Fe(CN)^{2-} + 3I^{-} \rightleftharpoons 2Fe(CN)^{2-} + I_{2}^{-}$	Reaction in 1 M HCl.
MnO	$2MnO_4^- + 16H^+ + 15I^- \Rightarrow 2Mn^{2+} + 5I_5^- + 8H_2O_1^-$	Reaction in 0.1 M HCl.
MnO ₂	$MnO_{2}(s) + 4H^{+} + 3I^{-} \Rightarrow Mn^{2+} + I_{2}^{-} + 2H_{2}O$	Reaction in 0.5 M H ₃ PO ₄ or HCl.
Cr ₂ O ²	$Cr_2O_7^{-} + 14H^+ + 9I^- \rightleftharpoons 2Cr^{3+} + 3I_3^- + 7H_2O$	Reaction in 0.4 M HCl requires 5 min for completion and is particularly sensitive to air oxidation.
Ce4+	$2Ce^{4+} + 3I^- \rightleftharpoons 2Ce^{3+} + I_3^-$	Reaction in 1 M H ₂ SO ₄ .

a. The pH must be ≥7 when O₃ is added to 1⁻. In acidic solution each O₃ produces 1.25 I₃⁻, not 1 I₃⁻. [N. V. Klassen, D. Marchington, and H. C. E. McGowan, *Anal. Chem.* **1994**, *66*, 2921.]