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Measurements to Statistics

Collection and Interpretation of Data

Part II

Given the sample mean what is the (elusive) population 
mean, µ?   

Sample mean vs. population mean

Confidence Interval

A confidence interval gives an estimated range of values 
which is likely to include an unknown population parameter.

The confidence intervals of a measurand is calculated using
a statistical tool;  Student’s t.  t – test.

Measurand – particular quantity (unknown parameter) subject 
to measurement.

The range of the confidence interval gives a range of 
plausible values for the unknown parameter and therefore  
how uncertain we are about the unknown parameter 
(precision).

Confidence intervals are convenient and informative than the 
hypothesis tests results where decisions are made either to  
"reject H0“ (H0 = null hypothesis) or "don't reject H0“. 

Confidence intervals are calculated so that one can be 
confident at a confidence level (a percentage) the range in 
which the parameter value would be; like 90%, 95%(norm), 
99%, 99.9% (or whatever the % is desired) of the range of 
values of unknown parameter.

Hypothesis Testing and the Statistics t-Test

The t-test is probably the most commonly used in Statistical 
Data Analysis procedure for hypothesis testing. 

There are several kinds of t-tests, but the most common is the 
"two-sample t-test" also known as the "Student's t-test" or the 
"independent samples t-test". 

The two sample t-test simply tests whether or not two 
independent populations have different mean values on some 
measure.

The null hypothesis, assumes no difference between the two 
populations to be true until proven wrong; i.e. there no difference 
between these two populations. 
Just because averages of two data sets are different,
it does not necessarily mean that the data sets are different.

The statistics t-test allows us to answer this question;

“Are the two groups have different average scores represent a 
real difference between the two populations, or just a chance 
difference in our samples?” 

by using the t-test statistic to determine a p-value that indicates 
how likely we could have gotten these results by chance. 

By convention, if there is a less than 5% probability of getting 
the observed differences by chance, (i.e. greater than 95% 
probability the difference is not by chance) we reject the null 
hypothesis and say we found a statistically significant 
difference between the two groups. 

Two major uses of Student’s t:

1. Statistical Evaluation of the mean:

With a limited number of replications µ cannot be found, only
it can be estimated by it’s sample mean;     .

How good is the sample mean in comparison to the (elusive) 
population mean, µ?

x
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Statistical Evaluation of the mean:

Given the mean and s (or sometimes σ), what is (can be) µ?

Given    and s, statistics ⇒ range of values, where µ would be.

Definition: Confidence interval (CI):

Confidence interval is an expression, stating the range wherein 
µ is likely to be found with a certain degree of confidence,
confidence level (CL),( i.e., with a defined level of reliability).

Confidence level (CL) : reliability of the estimate expressed 
as a percentage (norm - 95%).

x

x

Rephrasing ‘boxed' question in statisticians’ terminology,

Within what values would µ (the population mean) be, 
so that one can be c% confident that µ is indeed in that interval?

The confidence limits and interval are calculated using,

t = Student’s tconfidence limits )
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confidence interval      
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Confidence limits are the lower and upper limit values where 
the population mean would be, based on the limited 
replications.

A 'recipe' to find Confidence Interval/Limits for a data set at c%:

1. Find the value of Student's t from tables relevant to (n-1) 
degrees of freedom at desired c% confidence. 
n = # replications

2. Use t in the formula to find the limits.

ts

n
xµ = ±

Larger t, smaller n means wider range of possibilities of the 
true value. Also note that  smaller n’s are associated with larger 
t values.

ts
true value =  =   (n =  , Conf. Level = c%)

n
xµ ±

n-1 t drops w
ith increasing n

z

t depends on confidence level & n

n-1

n =7
CL = 99% 

CL % 50 90 95 98 99 99.5 99.9 

z 0.674 1.645 1.960 2.326 2.576 2.807 3.291 
 

z-table

z-table is the last line of the t-table.

If σ is known from other sources, 
then use z-table and z value (which is t for n = infinity)
related to the CL (usually 95%) in the following expression;

x zµ σ= ±
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12.6
11.9
13.0
12.7
12.5

n = 5
n-1 = 4  degree of freedom

Mean =12.54
s=0.40

ts

n
12.5

0.4;   5

50%, 0.741

90%, 2.132

x

x

s n

CL t

CL t

µ = ±

=
= =

= =
= =

Larger  confidence ~ larger t, for same n means a wider range of 
possibilities for the true value.  More likely to include µ within the 
confidence limits.
Speculate the effect of increasing replicates, n,  for same CL. (two 
effects)

12.41 - 12.67

12.16 - 12.92

For same c%, larger n leads to narrower range of possibilities for the 
true value µ!! – desired outcome.

Confidence Interval

Example: 
From a Gaussian population of mean µ = 10000 and σ=1000.

a. Select four data points n = 4 at a time.

b. Calculate the average from the 4 data points its 
std. deviation and  CI at 50% CL.

c. Repeat steps a and b many times.

d. Generate a visual to show the results.

e. Repeat a thro’ c for the same data selected but with CL = 90%

Sample data sets (n=4) from the set of population data (points);
population mean= 10000.

� Confidence limits do not contain µ
� Confidence limits contain µ

Standard deviation, standard error (of the mean) and 
confidence interval estimates are measures of experimental 
uncertainty.

Reporting result and uncertainty:

Either as Standard Deviation:                          
note: CL = 68.3%

or 

as Standard Error:

or

as  a Confidence Limits:

    (n = ..)result x= ± s

n

    for n = .. and CL = c%result x= ± ts

n

   (n = ..)result x s= ±

    for n = .. and CL = c%result x= ± ts

n
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   (n = ..)res sult x±=

    (n = ..)result x= ± s

n

 for n = .. and CL = c%   result x= ± ts

n

Error bar  - objective is to
minimize  the error bar

2. Comparison of Means with Student’s t.

Case I; comparison of a measurement with a “known” value

Case IIa; comparing replicates - two data sets -
homogeneous - same variances (same protocol)

Case IIb; comparing replicates - two data sets -
non-homogeneous – different variances (different 

protocols)

Case III; comparing individual differences - two data sets
- produced by different methods

Second major use of Student’s t:

2. Comparison of Means with Student’s t.

Case I; comparison of a measurement with a “known” value

Case IIa; comparing replicates - two data sets -
homogeneous - same variances (same protocol)

Case IIb; comparing replicates - two data sets -
non-homogeneous – different variances (different 

protocols)
Case III; comparing individual differences - two data sets

- produced by different methods

Student’s t:

1.  Confidence Interval for a data set at c%:

    for n = .. and CL = c%result x= ± ts

n

t-table for validation of a new 'method':

1. Prepare a standard solution of the material, µ.

2. Determine conc. using new method (n replications).

3. Calculate mean,   and s for data set.

4. Calculate CI for 95% confidence level (CL).

5. If µ falls within CI;  ⇒ VALID METHOD.

Case I (comparison of a measurement with a “known” value)

ts

n
x ±

x

t-tables to compare two data sets
(for same method giving two data sets, implies comparable s 
values, i.e. homogeneous  variances):

Are the data sets significantly different or not? 
Strategy: Compare mean values of the data sets.

Case IIa (comparing replicates)

1x

2x

Requirement: Both sets have the same or nearly the same
variances – s2 (verifiable by F test) i.e., comparable s values. 

Set 1: x1, x2, …., xi ;       and n1 observations

Set 2: x1, x2, …., xj ;       and n2 observations

a. Calculate t: tcalc for the pooled data from the two data sets.

1 2 1 2

pool 1
a c

2
c l

| - | n n
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n +n
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(n -1)s +(n -1)s

n
s

+n
=

-2

Calculation of
tcalc need mean
of xis and nis.
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b. Find t-table value for degree of freedom of (n1+n2-2) at 
confidence level of 95% (norm).

c. If tcalc < ttable

Data sets are not significantly different at the confidence 
level (95%).

Case IIb (comparing replicates)

a.  If the standard deviations are significantly different, 
i.e. non-homogeneous, student’s t value is calculated using;

calc 1 2 2 2
1 1 2 2

1
t = -

( / ) ( / )
x x

s n s n+

and the degrees of freedom (to the nearest integer) with;

( )
( ) ( )

22 2
1 1 2 2

2 22 2
1 1 2 2

1 2

/ /
DF= 2

/ /

1 1

s n s n

s n s n

n n

+
−

 
 +
 + +
 

b. Find the t-table value for degree of freedom (DF) 
calculated, at specified confidence level of 95% (norm)

c. If tcalc < ttable

Data sets are not significantly different at the confidence 
level (95%)

t-tables to compare two methods i.e. two data sets 
produced by the two different methods:

a. Subject two sets of laboratory samples (n replicates each) 
to the two protocols (methods).

b. Tabulate the results for each sample

Case III (comparing individual differences)
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Sample Method 1 Method 2 Difference

label (unit) (unit) d_i

1 17.2 14.2 -3

2 23.1 27.9 4.8

3 28.5 21.2 -7.3

4 15.3 15.9 0.6

5 23.1 32.1 9

6 32.5 22 -10.5

7 39.5 37 -2.5

8 38.7 41.5 2.8

9 52.5 42.6 -9.9

10 42.6 42.8 0.2

11 52.7 41.1 -11.6

-2.49091 = mean

6.748252 = std dev

1.22423 = t_calc

ttable= 2.228 two methods
produce same results

d

d
n

s
=calct

n
2

i

( )

1

−
=

−

∑ i

d

d d
s

n

c. For the differences

d. Find ttable for (n-1) deg. of freedom at 95% CL.

e. If tcalc < t95%,table; the methods produce results which 
are not significantly different at 95% CL.

n
2

i

( )

1

−
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d

d d
s

n d

d
n

s
=calct
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The F test

Some statistical procedures calls for pooling of variances, 
(Case IIa & IIb). Here a knowledge of the nature of the sample 
populations is needed i.e. are variances homogeneous or not. 
(similar s values or not).

So before proceeding with a procedure that pools variances, 
it is necessary to test for the assumption of homogeneity of 
variances

The F-test provides a tool for comparing variances of data sets.

In such a test, the outcome should be either there is no 
difference in population variances (Null hypothesis) or there 
is a difference in the population variances (Alternative 
hypothesis).

The test is performed using the variances of the two data sets,
say, set 1 (#1 assigned to the set with larger s) and set 2.

2 1

2 1

8                    7

0.001379       0.001430

Are the variances ( ) and therefore  values different?2

n n

s s

s s

= =
= =
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One of the variances of the two data sets should be larger than 
the other. Let the set 1 to be the one with larger variance 

s1
2 (> s2

2). Calculate the fraction Fcalc = Fexpt, written as follows;

Now compare the Fcalc to the Fcrit from a critical F values (table), 
where the degrees of freedom are (n1 - 1), (n2 - 1), 
(n1 and n2 are the number of replicates in data sets 1 and 2).

Reject the null hypothesis if the Fcalc > Fcrit. That is the 
variances are different.

There is no difference in the variances, if Fcalc < Fcrit
.

Symbols used Fcrit = Ftable ; Fexpt =Fcalc

1 2

2
1

( , ) 2
2

calc n n

s
F F

s
= =

2 1

2 1

2 2
1
2 2
2

8                    7

0.001379       0.001430

0.001430

0.00137
1.075

9

3.87   variances not different!

calc

table calc

n n

s s

s
F

s

F F

= =
= =

= = =

= >

Subscript 1 associated with larger s.

n1-1

n2-1

Rejection of outliers: Q Test

Outliers are not always obvious.  To reject a suspicious 
data point from set of n data points, where there is no 
obvious gross error, the Q test is used. 

a. Arrange the data in the order of increasing value.

b. Determine the range = (xmax - xmin)

c. Find the difference between the data point in question, 
and its nearest neighbor.  gap = |Xq-Xn|

d. Calculate the rejection quotient Qcalc as;

e If Qcalc < Qtable for the n, accept xq for a given confidence 
level, 90% - norm. (> i.e 10% chance it is an outlier).

Q
gap

rangecalc =

??

Outliers, if exists appear at the extremes.
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Rejection of outliers: Grubbs Test

Calculate the Grubbs statistic.

 
calc

questionable value x
G

s

−
=

Compare Gcalc vs Critical table values for G for n observations

If Gcalc < Gtable; accept the questionable value at 95% CL.

Graphs:

Graphs are an essential and efficient way to communicate 
experimental data in a visual manner.

Normally, relationships between two variables are plotted; 
‘independent variable’ on x axis and dependent variable on 
y axis.

Whenever possible, linearization of functions is done.  Linear 
functions allow better mathematical algorithms to find the 
best fit line.  Linearization is not essential if a well established 
mathematical relationship (non-linear) is available relating 
the [x,y] coordinates.

In analytical chemistry – (external) calibration plots, internal 
standard (addition) plots, and standard addition plots;
(straight lines) are widely used in quantification.

abscissa, ordinate

x1,y1

‘independent variable’  x

‘d
ep

en
de

nt
 v

ar
ia

bl
e’

  y

coordinate

Least Square Analysis - Linear Regression Plots:

Often the desired quantities are determined from line graphs.

General form;   y = m x + b

Regression plots are used as calibration ‘curves’ as well.

Calibration curve: A graph showing the variation of the value 
of a property,  y, as a function of known analyte concentration, 
c, under specified conditions.

E.g. y = m c + b

The plot is usually constructed from the y-values corresponding 
to a set of standard solutions (concentration, x-values, known) 
- external calibration curve.

The y-value, yu (mean of k replicates) associated to an unknown 
conc. xu, is then used to determine unknown conc. xu and 
it’s uncertainty.

Experiment with no uncertainties produces data points, all on a 
perfect function, say a straight line.  But, in real experimentation 
such outcomes are very very rare.

Usually, the data points are not exactly on a line, but scattered 
around a line.
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x1,y1

x2,y2

x3,y3

x4,y4

y = mx+b

Best fit line equation
(model) 
and predictions   .

The best fit line (curve),also known 
as the linear model, has as many 
data points as possible in close 
proximity to it and spread on 
both sides of the line. y value 

predicted from 
linear model
= (mx3 + b)

y = mx+b

Best fit line equation
(model)

x1,y1

x2,y2

x3,y3

x4,y4

Residual = y3 - (mx3 + b)

Premise: Points on the ‘best fit’ line are the 
‘best’ y values predictable for a given set of
x values.

n = # data points

A single point per concentration
in a calibration plot is the (bare) 
minimum number of data 
points possible.

If more than one data point
is obtained the resulting
data points would have
a spread of values.

Every single data point is 
very unlikely to be the ‘right 
on’ the line.

xi,yi

(a+bxi)

If more than one data point
is available for each x value
the best fit line would be 
more reliable. 

Residual for a point i; di = |yi –(mxi +b)|

Data points deviates from the straight line, smaller the 
deviation better is the precision.

How to determine line with least deviations? i.e. best fit line.

LSA: Least Square Analysis.

Objective (of LSA) – to find the best straight line relevant to 
the data set – best line fit. 

LSA strategy minimizes the residuals for all points.
For data point  i; di = |yi –(mxi +b)|

Assumption: x values are 'exact'
y values contain an error.

Best line – produces values for m and b that would minimize 
all deviations/residuals (positive or negative).
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y=(mxi +b)

Criterion: find the line so that the sum of squares of residuals 
for the data set is a minimum (least square minimization).

Mathematical treatment of a data set will generate the 
‘best vales’ for m and b; ‘the best fit line parameters’ 
(Eq 4-16, 4-17).

LSA Assumptions:
• Uncertainties in x (e.g. standard concentrations) 

negligible compared to those of y (observations) values.
• Uncertainties in y (observations; e.g. absorbance)

values are similar.

The uncertainty/errors (std. deviation) for slope, intercept and 
xu calculated from the calibration plot.

The best fit lines are generated with the data points (xi, yi)
of a data set and each point is associated with an 
uncertainty.

So the parameters in the best fit line and the quantities 
calculated using the best fit line are associated with 
uncertainties (standard deviations, si).

slope, m s
m

intercept, b s
b

calculated , x
u

s
u

Overall   y s
y
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s
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∑∑
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
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2
1

2

2
2

2

2

22

2

2
2

2

σ
FYI

| ( ) |i i id y mx b= − +
n = #data points (calibration)

k = # replicates (unknown)

2 2

2( )1 1

| | ( )
u

i

ys y y

m k xn m x

−= +
−

+
∑

us

Mathematically accurate expressions for m, band sm, sb and sy.

2 1( )xx xS s n= −

Least Squares Spreadsheet y = mx+b
Best fit line equation
m, b, sm, sb, sy Concentration of unknown, u, is calculated using the 

calibration curve (at hand).

a. find the yu values for k replications of the 
unknown. Calculate the mean of yu.

b. calculate the concentration, mean xu values 
corresponding to yu values in (a).
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The error for xu (usual notation x) from a best fit line 
calibration curve, with sb, sm values defined below and 
k replications of the unknown be sx.  

n = # of calibration points used for the calibration curve.

Result = xu ± su.

Confidence interval of xu; xu ± (t%psu)/√k  at p% and k =  
: better error bar

t%p for (n-2) degrees of freedom (if using best fit line) at p% 
confidence level (%p = 95% usually where n = # of calibration 
points and k = number of replicated measurements).

See p.72 for an EXCEL routine to calculate sm, sb, sx and sy.

The overall objective is to obtain an accurate estimate of an 
unknown with the smallest possible uncertainty.
To minimize the uncertainty;

Make sy small – a good fit
Obtain many k replicate measurements 
A sufficiently large range for calibration and accurate standards.
Signal of the ‘unknown’ in the ‘middle of the calibration range’. 
Increase the number of calibration data points, n.

Optimum for k = n and n > 5 (⇒ smaller t-values)

2

2 2

( )1 1

| | ( )
y u

x u

i

s y y
s s

m k n m x x

−= = + +
−∑

# data points on calibration curve, n = 14

Correlation coefficient, R:

The coefficient assesses the degree of linearity between two 
variables y and x. 

1/2 1/22 2 2 2

1

2 2

1 1

( ) ( )

( )( )

( ) ( )

i i i i

i i i i

n

i i

n n

i i

n x y x y
R

n x x n y y

x x y y

x x y y

−
=
   − −   

− −
=

− −

∑ ∑ ∑
∑ ∑ ∑ ∑

∑

∑ ∑

R = +1; positive slope ideal fit ;  R2 = 1 
R= -1; negative slope ideal fit; R2 = 1
R = 0; zero slope ideal fit; R2 = 0

Least squares method considers all data points to calculate the 
m and b of the line.

Therefore, outliers skew the ‘best fit line’.

Each outlier, which by definition, is a point 3σy or 3sy away from 
the ‘line’ must be identified and eliminated; and then the line 
fitting is redone with the remaining data points.

This process must be done iteratively to identify the outliers.

An alternative method is the Thiel-Siegel line fitting method.
Leslie Glasser, J Chem Ed, Vol. 84 , 533, 2007

6σ

Gaussian Curve:

The area within the 6σ limit is 99.7% of the total area.

(µ-3σ)      (µ+3σ)

σ±mean
2σ±mean
3σ±mean

68.3%;       
95.4%  
99.7%
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Outliers in calibration plots

-3sy

Data points 3sy away from the ‘line’
must be identified and rejected
in final best fit line calculation. 

+3sy

uy

ux

u2s

from k
replications

2

2 2

( )1 1

| | ( )
y u

x u

i

s y y
s s

m n m xk x

−= = + +
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X-variable

Y-
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bl

e

Data points of a Good Fit Plot

sy

At least ~2/3 of data points lies 
within ± sy from the fitted line.
Also an equal number of data 
points must lie on either side of 
the line.  

Calibration curve range preferably includes the ‘test’ 
concentrations; preferably 0.5 to 1.5 times the ‘test’ 
concentrations.

Each standard – run in at least in triplicate.

R2 > 0.995 good fit.

y-intercept, |b| – (after correcting for the blank) < 2% y target 
value of ‘test’.

x-variable

y-
va

ria
bl

e

0 00 0 02u ub y y↔| | ~ . .   

0 5 ,~ . ' 'u lowestx

1 5 ,~ . ' 'u highestx
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Thiel-Siegel Line Fitting


