Systematic Equilibrium Calculations

Often, the species in an aqueous solution sets up multiple equilibria among themselves.

The species involved come from on or more of the following;

(a) dissolution of molecules

- (b) dissociation/association of dissolved species
- (c) hydrolysis of ions
- (d) the ionization of the solvent.
- (e) complex ion formation

Equilibrium Calculations

Systematic Approach to Calculate Concentrations of Chemical Species

Calculation of concentration of all species in solution:

Following the identification of <u>all</u> the species (say, *n*, *number of species*) present in the solution, identify *every* chemical equilibrium system in the chemical system.

To solve for the concentrations of n types of chemical species, it requires n independent equations.

Such a set of equations can be formulated from considering the following;

- a. equilibrium constant expressions
- b. charge balance equation Conservation of charge
- c. mass balance equations Conservation of mass
- d. system conditions *measurements* such as pH, pX etc. if available.

Charge balanced equation:

The solution being electrically neutral, sum total of all positive charges must be equal to that of all the negative charges.

$$\sum_{i} z_{+n} [A^{+n}] + \sum_{i} z_{-m} [B^{-m}] = 0$$

 z_k charge on <u>species</u> with the sign.

Mass balanced equation:

Components although present in various combined forms (species) originate from well defined 'sources'.

Relate concentrations of such components to their initiation. (Hint: look for conjugate bases and like)

Other info: pH of the solution

Example:

	Dissolve 0.0100 moles H ₃ PO ₄
1L≁	add 0.0025 moles KOH

0.0100 M H₃PO₄ + 0.0025M KOH; starting concentrations $[H_3PO_4]_0$ $[K^+]_0 = [OH^-]_0$:just before reaction

Each chemical equilibrium generates one equation (include solvent auto-protolysis).

H ₃ PO ₄ 0.0100 M	+ KOH 0.0025M	\rightarrow H ₂ O + KH ₂ PO ₄
0.0075 M	0	0.0025M

a. Equilibria: $H_{3}PO_{4}(aq) \rightleftharpoons H^{+}(aq) + H_{2}PO_{4}^{-1}(aq) \qquad K_{1a} = \frac{\left[H^{+}\right] \left[H_{2}PO_{4}^{-1}\right]}{\left[H_{3}PO_{4}\right]}$ $H_{2}PO_{4}^{-1}(aq) \rightleftharpoons H^{+}(aq) + HPO_{4}^{-2}(aq) \qquad K_{2a} = \frac{\left[H^{+}\right] \left[HPO_{4}^{-2}\right]}{\left[H_{2}PO_{4}^{-1}\right]}$ $HPO_{4}^{-2}(aq) \rightleftharpoons H^{+}(aq) + PO_{4}^{-3}(aq) \qquad K_{3a} = \frac{\left[H^{+}\right] \left[PO_{4}^{-3}\right]}{\left[HPO_{4}^{-2}\right]}$ $H_{2}O \rightleftharpoons H^{+}(aq) + OH^{-}(aq) \qquad K_{w} = \left[H^{+}\right] \left[OH^{-}\right]$ $K_{w} = \left[H^{+}\right] \left[OH^{-}\right]$

<u>CBE:</u> $\sum_{i} z_{+n} [A^{+n}] + \sum_{j} z_{-m} [B^{-m}] = 0$

 $[K^+] + [H^+] - [OH^-] - [H_2PO_4^{-1}] - 2[HPO_4^{-2}] - 3[PO_4^{-3}] = 0$

MBE:

$$[H_3PO_4] + [H_2PO_4^{-1}] + [HPO_4^{-2}] + [PO_4^{-3}] = [H_3PO_4]_0$$

Select a chemical moiety present in *more than one* chemical species (form) that originated from a preferably a single compound if feasible.

CHEAQS

CHEAQS Next - is a free Windows program for calculating CHemical Equilibria in AQuatic Systems

http://www.cheaqs.eu/

Examples:

Study of the pH dependence of solubility (CaF₂).

Let the solubility be; $\mathrm{S}_{\mathrm{CaF2}}\,\mathrm{mol/L}$

Pertinent Reactions (equilibria):

$CaF_2(s) = Ca^{+2}(aq) + 2F^{-}(aq)$	$K_{sp,CaF2} = [Ca^{+2}][F^{-}]^{2}$
$F^{-}(aq) + H_2O = HF(aq) + OH^{-}(aq)$	$K_{b,F^-} = \frac{[HF][OH^-]}{[F^-]}$
$H_2O = \underline{H^+}(aq) + OH^-(aq)$	$K_w = [H^+][OH^-]$

CBE:

$$[H^{+}] + 2[Ca^{+2}] = [OH^{-}] + [F^{-}] \qquad \sum_{i} z_{+n}[A^{+n}] + \sum_{j} z_{-m}[B^{-m}] = 0$$

MBE:

 $[HF] + [F^{-}] = 2[Ca^{+2}]$

Solubility, S, of
$$CaF_2$$
; S = [Ca^{+2}]

Solving the five equations 'analytically' is a formidable task.

One strategy would be to calculate the concentrations of the species assuming a value for a pH, i.e. for an assumed [H⁺], and continue the procedure for a series of different pH values. Or,

$$K_{b,F} = \frac{[HF][OH^{-}]}{[F^{-}]} \implies [HF] = \frac{K_{b}[F^{-}]}{[OH^{-}]}$$
$$[HF] + [F^{-}] = 2[Ca^{+2}]$$
$$\frac{K_{b}[F^{-}]}{[OH^{-}]} + [F^{-}] = 2[Ca^{+2}] \implies [F^{-}] = \frac{2[Ca^{+2}]}{1 + \frac{K_{b}}{[OH^{-}]}}$$

$$\begin{split} & [Ca^{+2}][F^{-}]^{2} = [Ca^{+2}] \left(\frac{2[Ca^{+2}]}{1 + \frac{K_{b}}{[OH^{-}]}} \right)^{2} = K_{sp,CaF2} \\ & 4[Ca^{+2}]^{3} \left(\frac{1}{1 + \frac{K_{b}}{[OH^{-}]}} \right)^{2} = K_{sp,CaF2} \\ & 4[Ca^{+2}]^{3} = K_{sp,CaF2} \left(1 + \frac{K_{b}}{[OH^{-}]} \right)^{2} \\ & [Ca^{+2}] = \left(\frac{K_{sp,CaF2}}{4} \left(1 + \frac{K_{b}}{[OH^{-}]} \right)^{2} \right)^{1/3} \end{split}$$

$$\begin{bmatrix} Ca^{+2} \end{bmatrix} = \left[\frac{K_{sp,CaF2}}{4} \left(1 + \frac{K_{b,F}}{[OH^{-}]} \right)^{2} \right]^{1/3}$$
$$\begin{bmatrix} Ca^{+2} \end{bmatrix} = \left[\frac{K_{sp,CaF2}}{4} \left(1 + \frac{K_{b,F}[H^{+}]}{K_{w}} \right)^{2} \right]^{1/3}$$
$$\mathbf{S} = \begin{bmatrix} Ca^{+2} \end{bmatrix} = \left[\frac{K_{sp,CaF2}}{4} \left(1 + \frac{K_{b,F}\mathbf{10}^{-pH}}{K_{w}} \right)^{2} \right]^{1/3}$$

Examples:

Study of the pH dependence of solubility (BaC_2O_4) .

Let the solubility be; S_{BaC2O4} mol/L

