14. Iodimetric Titration of Vitamin C²³

Ascorbic acid (vitamin C) is a mild reducing agent that reacts rapidly with triiodide (See Section 15-7). In this experiment, we will generate a known excess of I₃ by the reaction of iodate with iodide (Reaction 15-18), allow the reaction with ascorbic acid to proceed, and then back titrate the excess I₃ with thiosulfate (Reaction 15-19 and Color Plate 9).

Reagents

Starch indicator: Make a paste of 5 g of soluble starch and 5 mg of Hg₂I₂ in 50 mL of distilled water. Pour the paste into 500 mL of boiling distilled water and boil until it is clear.

Sodium thiosulfate: 9 g Na₂S₂O₃·5H₂O/student.

Sodium carbonate: 50 mg Na₂CO₃/student.

Potassium iodate: 1 g KIO₃/student.

Potassium iodide: 12 g KI/student.

0.5 M H₂SO₄: 30 mL/student.

Vitamin C: Dietary supplement containing 100 mg of vitamin C per tablet is suitable. Each student needs six tablets.

OTOS MAN

0.3 M H₂SO₄: 180 mL/student.

Preparation and Standardization of Thiosulfate Solution

- 1. Prepare starch indicator by making a paste of 5 g of soluble starch and 5 mg of HgI₂ in 50 mL of water. Pour the paste into 500 mL of boiling water and boil until it is clear.
- 2. Prepare 0.07 M Na₂S₂O₃²⁴ by dissolving ~8.7 g of Na₂S₂O₃·5H₂O in 500 mL of freshly boiled water containing 0.05 g of Na₂CO₃. Store this solution in a tightly capped amber bottle. Prepare ~0.01 M KIO₃ by accurately weighing ~1g of solid reagent and dissolving it in a 500-mL volumetric flask. From the mass of KIO₃ (FM 214.00), compute the molarity of the solution.

^{23.} D. N. Bailey, J. Chem. Ed. 1974, 51, 488.

^{24.} An alternative to standardizing Na₂S₂O₃ solution is to prepare anhydrous primary standard Na₂S₂O₃ by refluxing 21 g of Na₂S₂O₃·5H₂O with 100 mL of methanol for 20 min. Then filter the anhydrous salt, wash with 20 mL of methanol, and dry at 70°C for 30 min. [A. A. Woolf, *Anal. Chem.* **1982**, *54*, 2134.]

3. Standardize the thiosulfate solution as follows: Pipet 50.00 mL of KIO₃ solution into a flask. Add 2 g of solid KI and 10 mL of 0.5 M H₂SO₄. Immediately titrate with thiosulfate until the solution has lost almost all its color (pale yellow). Then add 2 mL of starch indicator and complete the titration. Repeat the titration with two additional 50.00-mL volumes of KIO₃ solution. From the stoichiometries of Reactions 15-18 and 15-19, compute the average molarity of thiosulfate and the relative standard deviation.

Analysis of Vitamin C

Commercial vitamin C containing 100 mg per tablet can be used. Perform the following analysis three times, and find the mean value (and relative standard deviation) for the number of milligrams of vitamin C per tablet.

- 1. Dissolve two tablets in 60 mL of 0.3 M H₂SO₄, using a glass rod to help break the solid. (Some solid binding material will not dissolve.)
- 2. Add 2 g of solid KI and 50.00 mL of standard KIO₃. Then titrate with standard thiosulfate as above. Add 2 mL of starch indicator just before the end point.