Gran Plot

Ion selective electrodes respond to the activity of ions and not to the concentration, in it's strictest definition. pH electrode is a H-ion sensitive electrode.

Thus pH electrodes respond to the activity of hydrogen ions, a_{H+} , by way of pH = -log a_{H+} where $a_{H+} = \gamma_{H+} c_{H+}$.

When acid -base titrations are monitored following the pH as a function of the volume of the titrant added, an expression for the pH at the the point a certain volume of the titrant added can be derive as follows (before the end point).

Assume V_a ml of an acid HA, here KHP, of concentration C_{HA} was titrated with the strong base of concentration C_b ; the volume of NaOH added at a point be V_b . Let the volume of NaOH reqired to reach the equivalence point be V_e .

By Definition:
$$K_a = \frac{a_H \cdot a_A}{a_{HA}}$$
 charges on H, HA and A the ions not shown
 $K_a = \frac{\gamma_H \cdot C_H \cdot \gamma_A \cdot C_A}{\gamma_{HA} \cdot C_{HA}}$
 $C_A = \frac{V_b \cdot C_b}{V_a + V_b}$ because every OH- ion reacted produce A, and
is distributed in the new volume.
 $C_{HA} = \frac{V_a \cdot C_a - V_b \cdot C_b}{V_a + V_b}$ HA left in the new volume

Substituting for concentrations of A and HA in the K_{a} expresssion;

$$K_{a} = \frac{\gamma_{H} \cdot C_{H} \cdot \gamma_{A} \cdot C_{A}}{\gamma_{HA} \cdot C_{HA}}$$

$$\mathbf{K}_{a} = \gamma_{\mathrm{H}} \cdot \mathbf{C}_{\mathrm{H}} \cdot \gamma_{\mathrm{A}} \cdot \mathbf{V}_{\mathrm{b}} \cdot \frac{\mathbf{C}_{\mathrm{b}}}{\left[\left(\mathbf{V}_{\mathrm{a}} + \mathbf{V}_{\mathrm{b}}\right) \cdot \left(\gamma_{\mathrm{HA}} \cdot \mathbf{C}_{\mathrm{HA}}\right)\right]}$$

Substituting for C_A

$$\mathbf{K}_{\mathbf{a}} = \gamma_{\mathrm{H}} \cdot \mathbf{C}_{\mathrm{H}} \cdot \gamma_{\mathrm{A}} \cdot \mathbf{V}_{\mathrm{b}} \cdot \frac{\mathbf{C}_{\mathrm{b}}}{\left[\gamma_{\mathrm{HA}} \cdot \left(\mathbf{V}_{\mathrm{a}} \cdot \mathbf{C}_{\mathrm{a}} - \mathbf{V}_{\mathrm{b}} \cdot \mathbf{C}_{\mathrm{b}}\right)\right]}$$

Substituting for C_{HA}

upon rearrangement;
$$V_b \cdot C_H \cdot \gamma_H = \frac{\gamma_{HA}}{\gamma_A} \cdot K_a \cdot \frac{V_a \cdot C_a - V_b \cdot C_b}{C_b}$$

granp.mcd 1

$$V_{b} \cdot 10^{-pH} = \frac{\gamma_{HA}}{\gamma_{A}} \cdot K_{a} \cdot \frac{V_{a} \cdot C_{a} - V_{b} \cdot C_{b}}{C_{b}}$$

because by definition; $pH = -log(a_H)$

further, the third term on the right hand side simplifies to, where V_e is the equivalence point.

$$\frac{V_a \cdot C_a}{C_b} - V_b = V_e - V_b$$

because $C_a \cdot V_a = C_b \cdot V_e$

i.e.
$$V_b \cdot 10^{-pH} = \frac{\gamma_{HA}}{\gamma_A} \cdot K_a \cdot (V_e - V_b)$$

Expanding the above expression and upon rearrangement:

$$\left(V_{b} \cdot 10^{-pH}\right) = -\left(\frac{\gamma_{HP}}{\gamma_{P}} \cdot K_{a} \cdot V_{b}\right) + \frac{\gamma_{HP}}{\gamma_{P}} \cdot K_{a} \cdot V_{e}$$

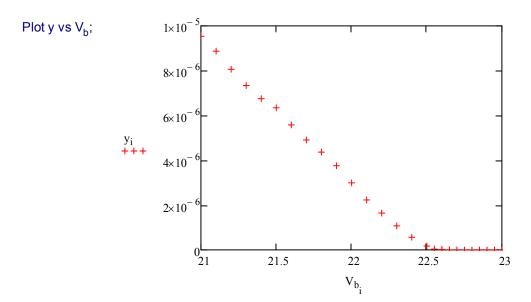
In the region very close to the end point the ratio of the *activity coefficient ratio is practically constant*. Thus a plot of $V_b \cdot 10^{-pH}$ vs V_b will yield a straight line of which the slope:

slope = $\frac{\gamma_{HA}}{\gamma_A} \cdot K_a$; if the activity ratio can be calculated we can estimate K_{aHA} . and the intercept on x axis is the equivalence point !!!

The usefulness of the gran plot is that it allows determination of the end point with data, obtained before the end point. This is closer to the equivalence point than those determined with indicators (which are really end points; such points are often detected 'after the fact').

Submit the following calculations (well documented):

- i. Determine the equivalence point from best fit line, compare with the theoretical value.
- ii. Spreadsheet or mathcad work sheet to plot $V_b \cdot 10^{-pH}$ vs V_b .
- ii. Calculation of the activity coefficient ratio at ~95% to the end point.
- iv. Second dissociation constant of Phthalic acid, $K_{a,HA} = K_{2aH2A}$ (literature value, find out from the appropriate places)


An example data set worksheet in **Mathcad** is shown below. You may follow the logic of it not necessarily the Mathcad syntax.

Data from the titration Volume of base added and the pH of the solution after addition of the base :

	(21.000)		(6.3424)
V _b :=	21.100		6.3760
	21.200		6.4192
	21.300		6.4624
	21.400		6.5008
	21.500		6.5296
	21.600		6.5872
	21.700		6.6448
	21.800		6.6976
	21.900		6.7648
	22.000		6.8656
	22.100		6.9952
	22.200		7.1296
	22.300	pH :=	7.3168
	22.400		7.5952
	22.500		8.1088
	22.550		8.6944
	22.600		9.0736
	22.600		9.2992
	22.650		9.5536
	22.700		9.7024
	22.750		9.8416
	22.800		9.9472
	22.850		10.053
	22.900		10.130
	22.950		10.211
	23.000		(10.269)

Gran Plot: As Derived before the relationship for Gran plot is:

 $y_i := V_{b_i} \cdot 10^{-pH_i}$ Set y as; i := 0..26

To plot the line; selection of points upto 22.40 mL, before end point from the data above.

		(21.000)		(6.3424)	
		21.100		6.3760	
		21.200		6.4192	
		21.300		6.4624	
		21.400		6.5008	
		21.500		6.5296	
		21.600		6.5872	
	Vbs :=	21.700	pHs :=	6.6448	
		21.800		6.6976	
		21.900		6.7648	
		22.000		6.8656	
		22.100		6.9952	
V_{b} s is the Gran Plot x axis		22.200		7.1296	
15 points use here.		22.300		7.3168	
		22.400		7.5952	I

Gran Plot y axisj := 0..14 $yaxis_j := Vbs_j \cdot 10^{-pHs_j}$ Plot Parameters of the Gran plot best fit line: $slope(Vbs, yaxis) = -6.42464 \times 10^{-6}$ intercept(Vbs, yaxis) = 1.44356 \times 10^{-4}

 $\begin{array}{c} & \text{Gran Plot} \\ & 1 \times 10^{-5} \\ & 8 \times 10^{-6} \\ & 9 \\ & 10^{-6} \\ & y_i \\ & 1 \times 10^{-6} \\ & 2 \times 10^{-6} \\ & 0 \\ & 2 \times 10^{-6} \\ & 0 \\ & 1 \\ & 21.5 \\ & 22 \\ & 22.5 \\ & 22.5 \\ & 23 \\ \\ & Vbs_j, V_{b_i} \end{array}$

 $yfit_{i} := slope(Vbs, yaxis) \cdot Vbs_{i} + intercept(Vbs, yaxis)$

Activity Coefficeints for Gran Plot.

Best fit line equation:

The activity coefficients for HA⁻¹ and A⁻² (HP⁻¹ and P⁻², here) are required to calculate K_a from the Gran plot output. The activity coefficients at about 0.95V_e (V_e = equivalence point) will be used here (assuming they do not vary significantly in that region). To calculate activity coefficients, among other factors, μ , is needed. This is how you may calculate μ : assuming the variation of μ near the end point to be minimal.

Find your $0.95V_e$ value first (for the titration involving 50.00mL of KHP). At that point H⁺ and OH⁻ ion concentrations are negligible (so disregard the ionic contribution from them) compared to K⁺, Na⁺, HP⁻ and P⁻² concentrations and the *concentrations* of which are (symbolized as K, Na etc):

$$V_{e} := 22.46 \qquad C_{OH} := 0.100 \qquad \qquad Concentrations assumed for this example C_{KHP} := \frac{C_{OH} \cdot V_{e}}{50.00} \qquad \qquad K_{W} := \frac{50}{0.95 \cdot V_{e} + 50} \cdot C_{KHP} Na := \frac{0.95 \cdot V_{e}}{0.95 \cdot V_{e} + 50} \cdot C_{OH} HP := 0.050 \cdot \left(\frac{50}{0.95 \cdot V_{e} + 50} \cdot C_{KHP}\right) P := 0.95 \cdot \left(\frac{50}{0.95 \cdot V_{e} + 50} \cdot C_{KHP}\right) \mu := \frac{1}{2} \cdot \left[K \cdot 1^{2} + Na \cdot 1^{2} + HP \cdot (-1)^{2} + P \cdot (-2)^{2}\right] \qquad \mu = 0.091$$

Use DHE to estimate γ_{P} and γ_{HP} for the above $\mu\!\!:$ assume both pthalate ions have same $\alpha.$ From the tables:

$$\alpha_P := \ 600 \qquad \alpha_{HP} := \ \alpha_P \qquad \qquad z_P := -2 \qquad \qquad z_{HP} := -1$$

DHE

$$\log(\gamma_{\rm P}) = \frac{-0.51 \cdot (z_{\rm P})^2 \cdot \sqrt{\mu}}{1 + \frac{\alpha_{\rm P} \cdot \sqrt{\mu}}{305}} \qquad \qquad \log(\gamma_{\rm HP}) = \frac{-0.51 \cdot (z_{\rm HP})^2 \cdot \sqrt{\mu}}{1 + \frac{\alpha_{\rm HP} \cdot \sqrt{\mu}}{305}}$$

 $\gamma_{HP} \coloneqq 0.800 \qquad \qquad \gamma_P \coloneqq 0.411$

Equating the slope to the derived expression for the slope, and solving for K_a ;

$$-\left(\frac{\gamma_{HP}}{\gamma_{P}} \cdot K_{a}\right) = -6.42464 \times 10^{-6}$$
$$K_{a} := \frac{6.42464 \times 10^{-6} \cdot \gamma_{P}}{\gamma_{HP}}$$
$$K_{a} = 3.301 \times 10^{-6} \quad \text{at room temperature.}$$