Mass Spectroscopy

Mass Spectroscopy is a technique causing the formation of the gaseous ions with or without fragmentation; the gas phase ions are then characterized by their mass to charge ratios (m/z) and their relative abundances.

In MS, compounds are ionized. The ionized molecule often fragments into smaller ions/radicals. The positively charged fragments produced are separated based on their nominal_mass/charge (m/z) ratio.

 $\begin{array}{ccc} \text{ionization} & \text{fragmentation} \\ M & & & & \\ \hline & & & \\ \hline & & & \\ \hline & & \\ Parent \ \text{ion} & & \\ daughter \ \text{ions, radicals, neutrals} \end{array}$

Most of the ions has z=+1, thus in a given ion, m/z = mass of the fragment.

A plot of relative abundance of ions vs m/z of all charged particles is the mass spectrum.

If the quantity of energy supplied to a molecule is greater than it's ionization energy a molecular ion is formed (parent ion).

The Mass spectral pattern is unique to a molecule (fingerprint), especially EI.

Mass Spectrum presented as a bar graph.

Parent/Molecular Peak M+.:

An molecular ion that has not lost/gained atoms. The nominal mass of which is calculated with the mass numbers of the predominant isotopes of atoms.

Base peak:

Base peak is the peak from the most abundant ion, which is often the most stable ion.

Fragment peaks other than the molecular ion peak is given the symbol A, then it's isotopic peaks would be A+1, A+2, ,,,

- M+· Radical ion (odd e)
- Neutral radical (odd e) N٠
- Ν Neutral (even e)

M⁺ (even e) would not break up into a radical ion....

A peak made up of the principal isotopes of atoms making up the ion.

TARIE 1 3	Relative	Isotone A	hundances of	Common	Elements
IADLE 1.3	Relative	Isotope A	bundances of	Common	Elements

Elements	Isotope	Relative Abundance	Isotope	Relative Abundance	Isotope	Relative Abundance
Carbon	^{12}C	100	¹³ C	1.11		
Hydrogen	^{1}H	100	^{2}H	0.016		
Nitrogen	^{14}N	100	^{15}N	0.38		
Oxygen	¹⁶ O	100	17O	0.04	¹⁸ O	0.2
Fluorine	¹⁹ F	100				
Silicon	²⁸ Si	100	²⁹ Si	5.1	³⁰ Si	3.35
Phosphorus	${}^{31}P$	100				
Sulfur	³² S	100	³³ S	0.78	³⁴ S	4.4
Chlorine	35Cl	100			³⁷ Cl	32.5
Bromine	⁷⁹ Br	100			^{81}Br	98
Iodine	^{127}I	100				

E.g. $^{\bullet}$ %M+1=(0.012n_{H}+1.08n_{C}+0.369n_{N}+0.038n_{O}+5.08n_{SI}+0.801n_{S})

MS cannot distinguish between isotopomers (isomers having the same number of each isotopic atom but differing in their positions).

Mass Spectrometer:

Create gas-phase ions of sample.

Separate ions in space or time basis based on m/z ratio accomplished by mass analyzers.

Detect the quantity of ions of each ion based on the m/z ratio.

Ionization:

Electron Ionization (Electron Impact, EI) Chemical Ionization (CI) Field Desorption (FD) Ionization Fast Atom Bombardment (FAB) Matrix Assisted Laser Desorption Ionization (MALDI) Thermospray Ionization Electrospray (ESI) Atmospheric Pressure Ionization (API) Atmospheric Pressure Chemical Ionization (APCI) Inductively Coupled Plasma (ICP)

Volatilized compound is ionized by electron impact. An electron beam is generated by a accelerating the electrons from a heated filament through an applied voltage.

The electron energy is defined by the potential difference between the filament and the source housing and is usually set to 70 eV (\sim 1.12x10⁻¹⁷J).

A field keeps the electron beam focused across the ion source and onto a trap (collimating magnets).

Upon impact with a 70 eV electron, the gaseous molecule may lose one of its electrons to become a positively charged radical ion, daughter ions, etc.

Electron impact ionization (EI)

70eV – high energy electrons, molecular ion - very energetic, low/no abundance.

Chemical ionization (CI):

Interaction of the molecule M with a reactive ionized reagent species (gaseous Bronsted acids). E.g., El of methane, generates CH_4^{+*} which then reacts to give the Bronsted acid $CH_5^{+;}$;

$$CH_4^{+} + CH_4 \rightarrow CH_5^+ + CH_3^-$$

If M in the source has a higher proton affinity than CH_4 , the protonated species MH^+ will be formed by the exothermic reaction.

 $M + CH_5^+ \rightarrow MH^+ + CH_4$

CI is a softer ionization process.

Reagent Gas	Reagent Ion	Analyte Ion/Quasi-molecular Ion	Comment
υ.	u.+	OTLUD+	Varu energetia, considerable formantatio
п2 СЧ.	13 CH-*		Finance in a sector of the sec
CH	Calle* Calle*	(M+CaHet	Energetic protonating agent
CIL	C216, C116	(M+Caller	Form adduct ions
i-C4H10	C4H9 ⁺	(M+H)*	Mild protonating agent, ionizes all nitroge
NH ₃	NH4 ⁺	(M+NH4)*	Selective, little fragmentation
NH3-CH4	NH4 ⁺	(M+H)*	Selective protonative agent
Biacetyl	CH_3CO^+	(M+CH ₃ CO) ⁺	Acetylating agent
Ar	Ar ⁺	M*	Energetic charge exchange agent
CS2	CS_2^+	M ⁺	Mild charge exchange agent
CH3ONO-CH4	CH ₃ O ⁻	(M-H) [.]	Mild proton abstraction reagent
NF ₃	F-	(M-H)	Proton abstraction reagent
CHCl ₃ CH ₄	Cl	(M+CI)	Chloride addition reagent

Magnetic Sector Mass Analyzer (Single/Double Focusing) Quadrupole Quadrupole Ion Trap Fourier-Transform Mass Spectrometry (FTMS) Time-of-flight (TOF) Tandem Mass Spectrometry MS-MS⁽ⁿ⁾

Mass Analyzers:

Ion Detection: Faraday Cup Electron Multiplier Photomultiplier Conversion Dynode

Scan with MS1 (only) turned on - entire MS spectrum.

Set MS1 to filter fragment of interest, dissociate further in q collisionally and mass analyze by scanning with MS2.

El Spectra

El spectra are rich in fragments thus useful in structure determination (thro' interpretation).

Parent ion may be absent (aliphatic alcohols, nitrites, nitrates, nitro compounds nitriles and highly branched compounds).

Intensity of peaks depends on the stability of the ion.

Characteristic losses point to characteristic moieties in the molecule e.g. O(16), OH (17), H_2O (18) losses from alcohols. (M-3 to M-14 and M-19 to M-25 peaks are unlikely, exceptions exist; HF(20) loss)

Molecular Ion Peak

The highest mass ion in the spectrum. Provides the most valuable information; molecular mass of the molecule. That leads to elemental composition. Structural fragments are then fitted into the elemental composition. (CI and FAB).

M⁺·: MW (unit mass) in terms of the most abundant isotope of each element present. It is an OE ion. It yields ions in the high mass range by loss of logical neutral species.

Nitrogen Rule:

Molecule of even nominal mass must contain zero or even number of N atoms. An odd numbered nominal mass requires an odd number of N.

Nitrogen Rule (molecules and OE molecular ions, M+*)

Nearly all molecules are even electron systems.

If the nominal mass is even, the compound contain an even number of N atoms; 0,2,4,6,... If the nominal mass is odd, the compound contain an odd number of N atoms; 1,3,5,7,...

Nitrogen Rule (EE molecular ions)

EE precursor ions (M+H)⁺, (M+Na)⁺, (M+CI)⁻ etc; the N rule is;

If the nominal mass is odd, the compound contain an even number of N atoms; 0,2,4,6,... If the nominal mass is even, the compound contain an odd number of N atoms; 1,3,5,7,...

31

Parent Peak leads to molecular formula. (Appendix A)

Molecular formula leads to the structural (/partial) features of the possible molecular structure.

<u>Unsaturation</u> can be calculated from the molecular formula of M or fragments (octet rule) of the parent ion.

U = R + DB + 2TB = c - h/2 + n/2 + 1

c = #C & Si; h = #H & halogens; n = #N, P, As..ignore divalent atoms (O,S)

OE fragments generate integral U values, EE fragments generate U values which are odd multiples of 0.5.

m/z=74

MF	Unsaturation
$C_2H_2O_3$	2.0
CH ₂ N ₂ O ₂	2.0
C ₆ H ₂	6.0
C ₃ H ₃ FO	2.0
$C_2H_3FN_2$	2.0
C ₃ H ₆ O ₂	1.0
C ₂ H ₆ N ₂ O	1.0
C ₄ H ₇ F	1.0
C ₄ H ₁₀ O	0.0
C ₃ H ₁₀ N ₂	0.0

3. If needed to find the formula with $n_{\rm O}$ of O for the same MM;

New formula = Base formula + n_{O} O – $n_{O}C$ – $4n_{O}H$ which changes U to U+n_O ;

4. If needed to find the formula with $n_{\rm N}$ of N for the same MM,

New formula = Base formula + $n_N N - n_N C - 2n_N H$ and recalculate U; Fractional U's – unlikely formula.

U < 0 is an impossible combination, indicates likely presence of O and N.

Rule of Thirteen:

Used to generate possible formula for a given molecular mass.

1. Generate a base formula;

$$\frac{MM}{13} = n + \frac{r}{13} \longrightarrow C_n H_{n+r}$$

2. Calculate the index of U for the base formula.

$$U = \frac{n-r+2}{2}$$

Useful Links

http://www.colby.edu/chemistry/NMR/NMR.html http://www.colby.edu/chemistry/PChem/Fragment.htm

http://www.chemcalc.org/ Main Page MF finder

http://www.chem.uni-potsdam.de/tools/index.html

Using mass number for isotopes of atoms is
approximate. Actual mass of a given isotope deviates
this integer by a small but unique amount ($\Delta E = \Delta mc^2$).
Relative to ¹² C at 12.0000000, the isotopic mass of
¹⁶ O is 15.9949146 amu., etc.

High Resolution MS:

High resolution mass spectrometers that can determine m/z values accurately to four/more decimal places, making it possible to distinguish different *molecular formulas* having the same *nominal mass*.

Element	Atomic Weight	Nuclide	Mass
Hydrogen	1.00794	^{1}H	1.00783
		D(² H)	2.01410
Carbon	12.01115	¹² C	12.00000 (std)
		¹³ C	13.00336
Nitrogen	14.0067	¹⁴ N	14.0031
0		¹⁵ N	15.0001
Oxvgen	15.9994	¹⁶ O	15.9949
		¹⁷ O	16.9991
		¹⁸ O	17.9992
Fluorine	18.9984	¹⁹ F	18.9984
Silicon	28.0855	²⁸ Si	27.9769
		²⁹ Si	28.9765
		³⁰ Si	29.9738
Phosphorus	30.9738	³¹ P	30.9738
Sulfur	32.0660	³² S	31.9721
		³³ S	32.9715
		³⁴ S	33.9679
Chlorine	35,4527	³⁵ CI	34,9689
		37CI	36.9659
Bromine	79.9094	⁷⁹ Br	78.9183
		⁸¹ Br	80,9163
Iodine	126.9045	¹²⁷ I	126,9045

TABLE 1.4 Exact Masses of Isotopes.

MF	Unsaturation	Exact Mass
$C_2H_2O_3$	2.0	74.00040
$CH_2N_2O_2$	2.0	74.01163
C_6H_2	6.0	74.01565
$C_{3}H_{3}FO$	2.0	74.01679
$C_2H_3FN_2$	2.0	74.02803
$C_3H_6O_2$	1.0	74.03678
$C_2H_6N_2O$	1.0	74.04801
C_4H_7F	1.0	74.05318
C ₄ H ₁₀ O	0.0	74.07316
$C_{3}H_{10}N_{2}$	0.0	74.08440

Isotope Peaks

The peaks from the isotopes.

The intensity ratios (relative intensities) in the isotope patterns are arising from the natural abundance of the isotopes, thus are valuable to ascertain the atomic composition of ions.

M+1 peaks are primarily due the presence of ^{13}C in the sample.

M+2, M+4, .. indicative of presence of Br, Cl, S; $(^{79}Br:^{81}Br = 1:1, ^{35}Cl : ^{37}Cl = 3:1)$

Isotope peak abundance depends on the molecular constitution. Example, halogens Cl, Br.

Halogen Present	% M+2	% M+4	% M+6	% M+8	% M+10	% M+12
Cl	32.6				_	
Cl_2	65.3	10.6			M	=100
Cl ₃	97.8	31.9	3.5			
Cl_4	131.0	63.9	14.0	1.2		
Cl ₅	163.0	106.0	34.7	5.7	0.4	
Cl ₆	196.0	161.0	69.4	17.0	2.2	0.1
Br	97.9					
Br_2	195.0	95.5				
Br ₃	293.0	286.0	93.4			
BrCl	130.0	31.9				
$BrCl_2$	163.0	74.4	10.4			
Br ₂ Cl	228.0	159.0	31.2			

TABLE 1.5 Intensities of Isotope Peaks (Relative to the Molecular Ion) for Combination of Chlorine and Bromine.

Calculating isotope peak abundances (%) to confirm fragment and parent peaks.

Element	X+1	X+2	X+3	X+4	X+5	X+6
Н	0.012n					
С	1.08n	0.005 8n(n-1)				X=M or /
N	0.369n					
0	0.038n	0.205n				
F	0					
Si	5.08n	3.35n	0.170n(n-1)	0.056n(n-1)		
Р	0					
S	0.801n	4.52n	0.036n(n-1)	0.102n(n-1)		
CI	_	32.0n	_	5.11n(n-1)	_	0.544n(n-1)(n-2)
Br	_	97.3n	_	47.3n(n-1)	-	15.3n(n-1)(n-2)
I	0					

E.g. %M+1=(0.012n_H+1.08n_C+0.369n_N+0.038n_O+5.08n_{Si}+0.801n_S)

(M+1)/M ratio is paticularly useful to estimate the #C in the species.

$$\#C \le \frac{\%M+1}{\%M} \times 100$$

If molecular ion cleaves at a single bond (N rule corollary) then,

	M+• –	→ M+ +	M	
Mass:	even	even	even	(odd #N)
	even	odd	odd	(even #N)
	(even #N	l, 0,2,4,)		
	odd	odd	even	(even #N)
	odd	even	odd (odd #N)
	(odd #N;	1,3,5,)		

N atoms found here. If more than one N atom is present the other fragment may contain N atoms. Fragmentation:

Unreasonable losses from molecular ion:

M - [3-14] and M- [19-25] are unreasonable losses.

Reasonable losses from molecular ion Neutral fragments expelled by simple cleavage $OE^{+} \rightarrow EE^{+} + OE^{-}$

Neutral fragments expelled by multi-centered fragments $OE^{++} \rightarrow OE^{++} + EE$

Nominal mass of parent ion containing C, H, O, S, Si, P and halogens is even.

Examine the MS; M+• Downwards

Fragment	Due to loss of	Interpretation
M*• -1	-H•	Aldehydes, tert. Alcohols, amines,
M*• -2	Multiple -H•	Secondary alcohols
M*• -3	Multiple -H•	Primary alcohols
M*• -4 to -13	?	Consider contaminants
M*• -14	?	CH2•, N• not good losses
M*• -15	CH ₃ •	Available methyl groups, methylesters
M*• -16	0•	Peroxides
M*• -17	OH•	Alcohols, phenols, RCO ₂ H
M*• -18	H ₂ O	alcohols
M*• -19	-F•	Fluoro compound
M*• -20	-HF	Fluoro compound
M*• -21 to -25	-	
M*• -26	HC=CH	
M*• -27	•HC=CH2 or HCN	HCN from pyridine, anilines
M*• -28	C=O or CH ₂ =CH ₂	Verify McLafferty rearrangement

Fragmentation pattern:

From the fragment losses the parent peak may be predicted by working back.

Notation:

Fragment intensities depend on the stability of the ion and the probability of formation.

two electron movement

one electron movement

Stabilization of carbocations:

Ν,

1. Alkenes frequently undergo fragmentations that yield allylic cations

$$H_2C \stackrel{+}{=} CH \stackrel{+}{-} CH_2 - CH_2R \longrightarrow H_2C \stackrel{+}{-} CH = CH_2 + H_2C \stackrel{+}{-} R$$

Carbon-carbon bonds next to an atom with an unshared electron pair usually break readily because the resulting carbocation is resonance stabilized.

3. Carbon-carbon bonds next to the carbonyl group of an aldehyde or ketone break readily because resonance-stabilized ions called acylium ions are produced.

4. Alkyl-substituted benzenes undergo loss of a hydrogen atom or methyl group to yield the relatively stable tropylium ion. This fragmentation gives a prominent peak (sometimes the base peak) at m/z 91.

5. Substituted benzenes also lose their substituent and yield a phenyl cation at *m*/e 77.

A =halogen,-NO₂.-Keto group,-R. etc.

McLafferty Rearrangement

Radical cations localized on keto-type oxygen give β cleavage. Requires a H atom on a γ sp³ carbon. Candidates, ketones, esters, carboxylic acids.

Retro Diels-Alder Cleavage

Candidates, cyclohexenes; capable of forming a 6membered transition state; may include heteroatoms (N,O).

Structure Determination Protocol using MS Spectra

Determine the molecular weight, possible elemental compositions, isotopic abundances (to narrow the possibilities) and unstauration.

Identify prime, smaller mass losses like water, etc.; and as many as possible of the major peaks

Based on NMR, IR formulate structure candidates or partial structures, e.g. functional groups

Using MS, predict some fragments your structure would generate, calculate the masses and verify MS.

Go back and forth with other data spectral or otherwise, to corroborate or eliminate structures.

Sequential losses possible.

INTENSITY m/e (AS PERCENT OF BASE PEAK)

14	8.0		Using Mo	lecular io	on isot	ope peaks:
15	38.6		3 '	,		
18	16.3		$N_C := \frac{5.2}{96}$	100	NC	c = 3.717
28	39.7		80.			
29	23.4	Deselected		73		
42	46.6	intensities t	1g 0	<u> 36 -</u>	3C	from M+1
43	10.7	base peak		37		
★44	100.0 (base)			<u>14-</u>	1N	odd M
73	86.1 M ^{+.}	100		23		
74	3.2	3.72		16-	10	from M+2
75	0.2	0.23		7	7H	
Mass Probl	spectrum for em E. 7.		C ₃ H ₇ NO	C ₃ H ₇ NO	<u>1.0</u>	
FIG	. E.8		0 1			

72-44=28 loss of 28 from M to form base peak

No straight forward cleavage possible; probably a rearrangement occurs before cleavage.

Cleavage of Two bonds:

1. Alcohols frequently show a prominent peak at M - 18. This corresponds to the loss of a molecule of water.

$$\begin{array}{c} & & & \\ H & & & \\ R & & & \\ H & & \\ H & & \\ \end{array}$$
 R - CH[±]CH₂ +
 H M - 18

 Cycloalkenes can undergo a retro-Diels-Alder reaction that produces an alkene and an alkadienyl radical cation.

H₂O

3. Carbonyl compounds with a hydrogen on their - γ -carbon undergo a fragmentation called the *McLafferty rearrangement*.

A may be R, H, OR, OH, etc.

In addition to these reactions, we frequently find peaks in mass spectra that result from the elimination of other small stable neutral molecules, for example, N_2 , NH_3 , CO,HCN, H_2S , alcohols, and alkenes.

$\begin{bmatrix} 0 & H \\ H-C & CH_2 \end{bmatrix}^{\ddagger}$	$\longrightarrow \begin{bmatrix} H-C & O-H \\ H-C & CH_2 \end{bmatrix}^{t} + \begin{array}{c} CH_2 \\ H \\ CH_2 \end{bmatrix}$
m/e 72 M [‡]	<i>m/e</i> 44 (M [‡] - 28)
m/z=29 arises from acvlium	ion.

$$\begin{array}{c} H \\ C = 0 \\ C H_2 \\ H \\ C H_2 \\ H_3 \\ H_3 \end{array} + H - C = 0 \\ H - C H_3 C H_2 C H_2 \\ H \\ C H_3 \\ H_3 \end{array}$$

Carboxylic acids

 $Z = OH, OR, NH_2; Y = CH_2, O, NH$

Aromatic –CO₂H; M-17, M-45, M -18 (ortho effect) Aliphatic –CO₂H; M-17, M-45

Isopropyl butyl ether

Propyl butyl ether

Characteristic Cleavages by Functional Group

Patterns in mass spectra of compounds ionized by EI ionization.

Alkanes: Molecular ion present, may be low intensity, clusters of peaks 14 mass units apart appear.

Alcohols: Molecular ion is small or non-existent. Cleavage of the C-C bond next to the oxygen usually occurs. A loss of $\rm H_2O$ may occur.

Aldehydes: Cleavage of bonds next to the carboxyl group results in the loss of hydrogen (M-1) or the loss of CHO (M-29).

Ketones: cleavage of the C-C bonds adjacent to the carbonyl.

CH₃ H_3C CH₃ C₄H₇O 15.0235 Da 71.0497 Da

H₃C C₂H₃O 43.0184 Da 43.0548 Da

Esters: cleavage next to C=O (loss of -OR) and hydrogen rearrangements peaks.

 H_3C O H CH_3 $C_2H_3O_2$ 61.0133 Da

Carboxylic Acids: In short chain acids, loss of OH (M-17) and COOH (M-45) are prominent due to cleavage of bonds next to C=O. (M-1) present.

Amines: molecular ion - odd number. α cleavage dominates in aliphatic amines.

Amides: Primary amides show a prominent peak due to the McLafferty rearrangement.

Halides: isotopic peaks are diagnostic.

Ethers: cleavage $\,\alpha$ to the oxygen atom (C-C bond next to the oxygen).

H₃C∕^О∖ `CH₃ C₂H₅O C₂H₅ 45.034 Da 29.0391 Da