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Kinetic Theory of Gases
Chapter 33

Kinetic Theory of Gases

Kinetic theory of gases envisions gases as a collection of 
atoms or molecules in motion. Atoms or molecules are 
considered as particles. 

This is based on the concept of the particulate nature of
matter, regardless of the state of matter.

http://www.chemtutor.com/sta.htm#kin

The Kinetic Theory relates the 
'micro world' to the 'macro 
world’.

A particle of a gas could be an 
atom or a group of atoms 
(molecule). Observations

Gas density is very low

Pressure is uniform in all directions

IGL is independent of particle type

Dalton’s Law of Partial Pressures

KT Postulate

Particles are far apart

Particle motion is random

Gas particles do not interact

Gas particles do not interact

KT (IGL): Applicable when particle density is such that the 
inter-particle distance >> particle size (point masses).
Low pressures and high temperatures e.g 1atm and room temp.

For gases following the relationship, PV = nRT (IGL);

V

nRT
P 

Postulates

Gas particles in constant random motion.

Pressure in a gas is due to particle collisions (elastic) 
with the walls of the container from translational motion 
- the microscopic explanation of pressure.

Gas particles do not exert forces on each other due to their 
large intermolecular distances.

Gas particles are very far apart. 

Collisions with the wall are elastic, therefore, translational 
energy of the particle is conserved with these collisions.  

Each collision imparts a linear momentum to the wall, 
which results the gaseous pressure. In Newtonian 
mechanics force defined as the change of momentum, 
here, due to the collision; pressure is force per unit area.

In KT, the pressure arising from the collision of a single 
molecule at the wall is derived and then scaled up to the 
collection of molecules in the container, to obtain the ideal 
gas law (IGL);

PV = nRT
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Gas kinetic theory derives the relationship between
root-mean-squared speed and temperature. 

The particle motions are random, therefore velocities along 
all directions are equivalent. Therefore the average 
velocity (vector) along any dimension/direction will be zero.

Now, 
the root-mean-squared velocity = root-mean-squared speed ;
it is nonzero.

A distribution of translational energies; therefore, many 
velocities would exist for a collection of gaseous particles. 

What is the distribution of the particle velocities?

Velocity is a vector quantity (v).  Speed is a scalar ().

v2 = v•v = vx
2 + vy

2 + vz
2

v2 = 2 = x
2 + y

2 + z
2

<v2> = <2>

Most properties of gases depend on molecular speeds.

; symbol <x> =  average of x.

The translational movements of particles are 
amenable to treatment with classical Newtonian 
mechanics (Justification, later).

Root mean square velocity, translational energy:
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Therefore,
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For a gas sample of n moles occupying a volume V (cube),
with an area of each side A. Consider a single particle of 
mass m, velocity v.

Particle collides with the wall.
(elastic collisions)

Change of momentum p =

v v 2 v

v v 2 v

( )

( )x x x

m m m

m m m

  
  

t

vxt

Number density of particles =   AN
nN

V


Half of the molecules moving on x axis with a (velocity 
component in the x direction) within the volume vx t 
collides with one surface in the x direction.

Ncoll = number of collisions on the wall of area A in time t.

where NA = Avagadro Number
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Change of momentum on a surface during t =

Force on the surface = Rate of change of momentum =

Pressure = Force per unit area = 

Pressure arises because of the molecular motion of gases;
microscopic/molecular model of pressure.

2vx Bm k T kT using  

Pressure: microscopic/empirical model.

PV = nRT Ideal gas law- IGL

Thus the kinetic theory describes the pressure of an ideal 
gas using a classical description of the motion of a single 
molecular collision with the walls and then scaling this 
result up to macroscopic proportions.

The fact that component velocities of all molecules 
are not the same, necessitates the definition of an average 
in each direction.  

Thus <vj> arises because of a probability distribution of 
vj values f(vj) in each direction (j = x, y, z)

 ν

v v 1( )
j

j j

all

f d Being a probability function;

velocity distribution function

Derivation of distribution functions  f(vi)

Math supplement

Chain rule
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also from another relationship
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Similarly

In general

Because derivatives of three independent variables are 
equal, the derivatives must be constant, say = - ;(>0).

Upon rearrangement
and integration,

Note the distribution (probability) function!

?

where A = integration constant

Evaluating A:

Math supplement

even function

Mean/average

(Assumption slide 9)

Distribution
function

Distribution function: probability of a gas particle 
having a velocity within a given range, e.g. vx and vx+dvx.

use tables

averaging

Math supplement

Substituting for  in f (vj);

kT

m
whereNow,
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velocity distribution function

( )F v 

Deriving the distribution function for v

Changing the ‘volume’
element (in Cartesian) to
variable v, spherical 
coordinates.

2

2 2 2 2

replace by  4

by

x y z

x y z

dv dv dv d

and v v v v
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rise exponential decay

Notice the shape, blue. ave’s of  Xe, H2, He ?
Earth and Jupiter (300)
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Notice the shape, blue.

rise
exponential decay

ave’s of  Xe, H2, He ?
Earth and Jupiter (300)

At lower angular velocities 
slower moving molecules
go through the second slit.

Detector signal proportional 
to the number of particles 
reaching the detector.

x and  fixed
 varied

x x
v

t



 t






Notice the shape.

Most probable velocity vmp:  differentiate F(v), set to zero.

Most probable velocity vmp

Mean (average) velocity: Root mean square velocity:

Using:
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(Assumption slide 4)
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Nc = number of particles colliding.

Number of collisions per unit time on the wall of area A:

<vx>

average x component of 
velocity 

<vx> =

A

# molecules in ‘light blue volume’
of the cube colliding per unit time =

Rate of collisions on surface =

Collisional Flux Zc:

Number of collisions on the wall per unit time per unit area.

&

Substituting in Zc;

Particle collision rates: (Hard sphere model)

Particles interact when spheres attempt to occupy the 
same region of the phase. (consider one moving particle –
orange, label 1; all other particles stationary are red – label 2 

cyl aveV v dt

 = collisional cross-section.

Because the collisional ‘partners are moving too’ in reality, 
an “effective speed”, <v12>,  of orange particle will be 
considered in the model to emulate the collisions the orange 
particle encounters;
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Because the collisional ‘partners are moving’, an effective
speed <v12> used to model the system;

1 2

1 2

;   reduced mass
m m

m m
 



cyl aveV v dt

Collisional partner (red) density = 2N

V

Particle collisional frequency of it = z12

For a sample of one type of gas;

Volume covered by orange in dt = Vcyl

Collisions by it in time dt = 
V

N
Vcyl

2

Total collisional frequency, two types of gases Z12:

Total number of collisions in the gaseous sample.

For a sample of one type of gas we have;

Accounts for double
counting

Mean Free Path:

Average distance a particle would travel between two 
successive collisions two types of molecules , say 1 and 2.

For one type of molecules,

Effusion:

Effusion is the process in which a gas escapes through a 
small aperture. This occurs if the diameter of the aperture is 
considerably smaller than the mean free path of the 
molecules (effusion rate = number of molecules that pass 
through the opening (aperture) per second). Once the particle
passes through it generally wont come back because of the 
low  partial pressure on the other side 

Pressure of the gas and size of the aperture is such the 
molecules do not undergo collisions near or when passing 
through the opening.
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http://en.wikipedia.org/wiki/Effusion

Left – effusion; right - diffusion. Effusion occurs through 
an aperture (size A~d) smaller than the mean path of the 
particles in motion whereas diffusion occurs through an 
aperture through which many particles can flow through 
simultaneously. 

Low P

High P

d <  d > 

Collisional Flux ZC:

ZC = number of collisions per unit time per unit area.
(by one type of molecule); definition.

Note: ;using IGL

Upon substitution for              and simplification;, avev N

Effusion rate decreases with time because of the reduction 
in gas pressure inside the container due to effusion/diffusion.

And rate of loss of molecules

Upon substitution

Integration yields;

-vx0 vx0
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