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Quantum Chemistry Postulates
Chapter 14

Quantum theory can be formulated with to a few postulates, 
which are theoretical principles based on experimental 
observations. 

For a physical system consisting of a particle(s) there are
associated mathematical functions known as wave 
functions. A wave function carries ‘information’ about 
everything that can be known (observable/measurable) about 
the system. 

Every observable property is associated with an operator.

Operating on the wave functions with the relevant operator 
of an observable property, would produce the values of the 
observable property of the system.

Postulate 1. The state of a quantum mechanical system is 
completely specified by a function (r,t) that depends on 
the coordinates, r (x, y, z) of the particle(s) and on time, t. 
This function, called the wave function or state function, 
has the property that *(r,t)(r,t) d is the probability 
that the particle lies in the volume element d located 
at rat time t.
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A wavefunction is a mathematical function and it contains 
a complete description of the system.
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Cartesian volume element d = dx dy dz
Polar coordinate volume element d = r2sin d d dr

d = dx dy dz
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It is routine to normalize wavefunctions, (r,t) .

The wavefunction may and often have imaginary terms,
thus the need to use the complex conjugate *(r,t) .

Because of the probabilistic interpretation the wave function 
(r,t) must satisfy, for a single particle the probability of 
finding it somewhere in space is unity (normalization).    

Normalization
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A well behaved  (meaningful) wavefunction must be single-
valued in r coordinate (because there can be only one 
probability value at a given position), continuous (so that a 
second derivative can exist and well behaved) and finite (to 
be able to normalize the wave function, , integrable). 
For a function to be normalized the function has to be 
well behaved.
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Operators in Quantum Mechanics:

Operators represent experimentally observable properties
such as position, momentum, energy…  

Operators enables the extraction of the values of the 
property of the system that the operator represents.
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Operator (eigenfunction) = eigenvalue  eigenfunction

Postulate 2. For every observable property there exists an 
operator corresponding to that property.  It is a Hermitian 
operator, a necessary condition to get real (non-complex) 
value for dynamic observables in quantum mechanics. 
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Hermitian operator,    , has the property;A

Postulate 3. In any single measurement of the observable 
associated with an operator , the only values that will 
ever be observed are the eigenvalues a, which satisfy the 
eigen value equation; 

A

A a 

If the system is in an eigenstate of with eigen value a, 
then any measurement of the quantity A will yield a. 

A

Result of an individual measurement
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Wave functions yields values of measurable properties of a 
quantum system. Value of the property A can be predicted 
theoretically by operating with the operator     . 
Wave functions would be that satisfy of an operation so that,

value
eigenvalue

eigen-function
eigen state

A

Multiple measurements of a property A would yield the same 
value, an , always; are termed eigenvalues; discrete values.

Eigenfunctions are orthogonal. Wave functions that are 
normalized and orthogonal are termed orthonormal. 


n n nA a 

are termed eigefunctions.

For simplicity the 
property in one 
direction considered.
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Observable Name
Observable

Symbol
Operator
Symbol Operation

Position Multiply by 

Momentum

Kinetic energy

Potential energy Multiply by

Total energy

Angular 
momentum

r r

p p

T T

( )V r ( )V r ( )V r

E T V  H

xl xl

yl yl

zl zl

r
Operators act on the wave function from immediate left, 

      in general.AB BA  

and the order of operation is important because,

 AB

2nd 1st

Operators are linear;   
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and  
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That is, all well behaved wave functions may not be 
eigenfunctions of an operator.  

Such wavefunctions however can be constructed as a 
weighted sum of eigenfunctions. Such eigenfunctions of an 
operator forms a complete set. 

Concept: Linear combination of eigenfunctions.

For most system the wavefunctions cannot be determined 
as analytically precise mathematical functions 
(eigenfunctions).  

Multiple measurements of a property of a system 
described  by such a wavefunction would yield more than 
one value for that property.

Postulate 4. If a system is in a state described by a 
wave function  (which is not an eigenfunction), then the 
average value of the observable value of a is given by the 
expectation value <a>;
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if  is un-normalized.

(to be continued)

if  is normalized.

1

Expectation (average) Value of measurements:

Although measurements yields an eigenvalues, 
a state does not have to be an eigenstate of initially.

A wavefunction for a state  , can be constructed from n
eigen-functions selected from a complete set of 
eigenfunctions {i} (vectors) of  an operator     , as; A


iiiA a 

n

i i
i

b  .

A

Basis set = { i}

Note, bi is how much  resembles i.

, however, is not an eigenfunction of    .A

n

i i
i

b  .

In this case we only know that the measurement of A will 
yield one of the values of ai (contribution from i ), but we 
don't know which one. ({i } is orthonormal).

However, we do know the probability that eigenvalue will 
occur for a single measurement of ai is |bi|2.
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b  (to be continued)

Basis set = { i}
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Basis sets and completeness.

Eigenfunctions of an operator will form a basis set which is 
said to be a complete set.  Orthogonality of wave functions 
allows them to form a basis set.

e.g. in the Cartesian coordinate system, unit or “basis” set
(vectors) are unit vectors i, j, k along the x, y and z 
direction. It (i, j, k) is a complete basis set.

Any arbitrary vector can be constructed in terms of the unit 
vectors (in terms of the complete basis set; i, j, k) as a 
linear combination of the basis set, with appropriate 
weighing coefficients a, b, c that corresponds to the basis set.

   a b c  r i j k

Basis sets and completeness.

Eigenfunctions of an operator forms a complete set {i}.

Now; 

n
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An arbitrary wave function can be constructed as a linear 
combination of the basis functions with appropriate 
weighing factors bi associated with the basis functions, i ;

Linear combination of 
eigenfunctions i .

Postulate 5. The wave function or state function of a 
system evolves in time according to the time-dependent 
Schrödinger equation; 
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Consecutive Operators; order

Preserve the order of the operators.


