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Using Quantum Mechanics in 
Simple Systems

Chapter 15

Quantization arises when the location of a particle (here an
electron) is confined to a dimensionally small region of space 
– quantum confinement. 

The simplest system that can be considered to study the 
effect of confinement is to consider a single electron system 
restricted to a space in a single dimension.

To understand the characteristics of a particle in a      
one dimensional box system it is necessary to solve the SE.  

Solving Schrodinger equation (SE) yields ’s which can be 
used to obtain values for measurable quantities like energy.

Understanding of  the solution to the particle in a 1-D box
case, would allow us to gain some insights into the nature 
of quantum systems.

That is, the idea of quantum behavior and the appearance of 
discrete states with specific energies. 

The particle in a 1D box 1D box system: A conceptually simple system where 
electron confined to a space in x direction of length ‘a’ 
and completely free (of zero potential energy) to move in 
that space of length ‘a’ but not allowed to move outside 
the space of length ‘a’.  

a

The particle cannot leave the box, in energy terms, the 
particle is incapable of overcoming an enormously large 
energy barrier for 0 > x  >a.  That is, for 0 > x  >a 
the potential energy V = , and for 0 < x < a, V = 0.

x

origin x = a
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Solving for  s of  starting with SE

The potential energy outside the ‘line’ is  making the particle
totally confined within the line, cannot penetrate the potential 
barrier. (V inside = 0 – for convenience, can be any constant.)

Using SE;

Inside the box,
V(x) = 0

Solving the SE would 
yield ’s  as a solutions

for allowed states. 

Solutions to this differential equation are of the above form:

H

2
2

2

d x
k x

dx

  
( )

( )

Solving the SE would yield ’s, wavefunctions as  
solutions for allowed states. SE is  linear, then of  is a 
solution then b is a solution,  b = constant.

The linearity of the SE is important and the consequence
is not trivial.

This linearity is in quantum mechanical amplitude.

A general solution of SE is not a normalized function.

Linearity allows normalization of the wave function.

Determining k, A and B

For   to be a well behaved function, for 0 > x >a. 
At x = 0 and x = a; the wave function is not allowed 
to acquire a value and also cannot become infinite.

Thus  (0) = 0 and  (a) = 0 (boundary conditions).

Apply BC;

which makes,

A  0

 sin ka = 0
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Also;

A  0, if not there is no function at all; which makes,

0( )sin ka

ka n

n
k

a









Where n = 1,2,…  and n  0.

( )n

n x
x = Asin

a

  
 
 

n = quantum number

Each n defines a state.

A wavefunction n is associated with a state – bound state,
meaning the particle’s existence is confined/bound into 
the box. 

For the particle in a 1D box, a state is associated with  a 
single quantum number, n.  A single quantum number is 
generated because there is only one set of boundary 
conditions involved here.

Quantum numbers are the outcome of the application 
of boundary conditions in the solution of the differential 
equations.

A general solution of SE is not a normalized function.

Generally each set of boundary conditions lead to a 
quantum number.

( )n

n x
x = Asin

a

  
 
 

Normalization to find the Amplitude A.

2

0

1( )
a

x dx =

2 2 2

0 0

2 2

0

2

1

1

2
1

2

2
  

( )
a a

a

n x
x dx A sin dx =

a

n x
A sin dx

a

a
A A

a

n x
sin

a a







   
 

   
 

  

    
 

 



A = ?

n = 1,2,…  and n  0.

Complete set of wavefunctions:

n defines a state with the associated state function n.

Full wave function is of the form:  ‘space’ * ‘time’



For a particle in an infinitely deep potential well there are
an infinite number of  – bound states.  Particle in never 
‘free’ i.e. always confined into the box. 
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Note;  the wave functions (solutions of SE equation) above 
are eigen functions of the total energy operator.

Wave functions that are eigen functions of  a certain 
operator are not necessarily be eigen functions of
another operator; they may be eigen functions of  the 
another operator or may be not.



The solutions of the particle in a box (SE) forms a complete 
set of functions.

Well behaved n s.

Note within ‘a’ ; 
#nodes = n-1

Standing waves

The time evolving wave 
function, - standing waves.

http://en.wikipedia.org/wiki/Particle_in_a_box

Some trajectories of a particle in a box 
according to Newton's laws of classical 
mechanics (A), and according to the 
Schrödinger equation of quantum 
mechanics (B-F). In (B-F), the horizontal 
axis is position, and the vertical axis is the 
real part (blue) and imaginary part (red) of 
the wavefunction. 

The states (B,C,D) are energy eigenstates, 
but (E,F) are not.

The time evolving wave 
function, - standing waves.

* *

*

Full wave function - form:  space * time

The time variation of the wave functions will be exactly
as previously seen.

n = 8

One part shown.
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Time independent 
Schrodinger Equation

 Key to calculation 
of observables

Calculation of energy of states 1D Box:




( ) ( )

( ) ( )n n n

H x E x

H x E x

 

 







2 2

2

2

2

2

22 2

2 2 2

2

2

2 2

2

n n n

n

n

H x E x

d n x
sin

m dx a a

d n n x
sin

m dx m a a

d

m dx

a

 



 



    
 

    






( ) ( )









H nE
n

Energy operator = H

Note eigenenergies are of precise values.  Measuring the 
energy of an eigenstate always produce the same value.



2

2
1

8

h

ma

2

2
4

8

h

ma
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2
9

8

h

ma

2

2
16

8

h

ma
Energy quantized
and increases with n.

Lowest energy non-zero!
Zero point energy.

2 2mE
k




 


Wave vector:

BC dictates the number 
of wave lengths between 
two consecutive states
is /2.

E
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Parity of functions

The eigenfunctions are symmetrical.
n = 1, 3  mirror image relationship, even parity, even function  
n = 2, 4   inverted  relationship, odd parity, odd function

Mathematically useful

Functions with different parities are always orthogonal.

So integrals involving products of functions with different 
parities are zero.

2 2

2 2

2

1 2

1 2

1 2 2

( ( ))m E V x

h
mE

h

mE mE

h h












  

2 2mE
k




 


For   to be a well behaved function, at 0 > x > a,
and at x = 0 and x = a the wave function is not allowed to 
become infinite. 

Thus  (0) = 0 and  (a) = 0 (boundary conditions).

The boundary condition turned the eigenfunctions of SE
from travelling waves to standing waves associate with 
discrete values for energy;

2 2

28n

n h
E

ma

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2

Probability density =  2

* 
Probability in a 
space d * d  

0*( ) ( )
x x

x

x x dx 




d = dx

The quantization of energy levels arises as a natural
outcome of the solution of SE, as opposed to an arbitrary
assumption (Bohr model).

The wavefunctions associated with the energy levels
are a natural consequence of the mathematical solution 
of the SE.

SE of any system, more complicated than the 1D particle 
in a box would have the same general properties and 
characteristics.

It is the confinement of the particle by way of trapping the 
particle in a ‘potential well’ that leads to quantization!

2

n=1

n=50

n=20

As n increases quantum
system morphs into
a classical system.  

Particle found with ~same
probability every where.

Correspondence Principle.

Further lifting the confinement (a >> 0) makes a quantum 
system reach it’s classical limit - correspondence principle.

0

0
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The solutions of the particle in a box (eigenfunctions ) 
forms a complete set (of functions).

Ramification of completeness of the set of wave functions

Any wave function f(x) that satisfies the requirements of an 
acceptable well behaved wave function can be ‘constructed’ 
from the ‘members’ of the complete set of functions. 

The ‘constructed’ wave function would be a sum with each 
term in the sum is associated with a coefficient
(i.e. weight/amplitude) that is a measure of the contribution 
by that ‘member’.

for all n.

1 1

2
               normalized set of eigenfunctions

2

n

n n n
n n

n x

a a

n x
f x b b

a a




 

 



  

sin

( ) sin

Any f(x) is expanded in terms of the normalized 
eigenfunctions.

(Basis set - basis)

The set of expansion coefficient bn is the representation in 
f(x) from the base function n.

1

  

pre-multiply by  and integrate;

 

     overlap integral

n n
n

m

m m n n
n

m m n m mn m
n n

m

f x b

f x dx b dx

b dx b b

f x dx





  

  









 
  

 

 



 

 



*

* *

*

*

( )

( )

( )

Determination of Expansion coefficients; bm

Energy operator for particle in a 3D box:



2 2 2 2

2 2 2

2 2 2 2

2 2 2

2

2

E KE PE
m x y z

H
m x y z

   
         

   
       




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Extending the results from 1-D to 2-D/3-D is deceptively
easy.  For a box of size a  b  c with BCs,

2D and 3D ‘boxes’

the time independent SE;

In SE:

and  E = Ex+Ey+Ez

Division by (x,y,z),

Solutions are of form;

Separation of variables

Solutions ~ 1D solutions !!

The wave equation where      can be written as a sum of 
terms that do not share coordinates can be resolved into 
the set (DE with three variables transforms to three DEs, 
each with one variable);

H 2 2

2

2 2

2

2

2

2

2

22 2

2 2

2
              

2
              

2
  

8

     

8

8

8
       

8

x

x y z

x y z

y

z

yx z
n n n

yx z

x
n

y
n

z
n

x

y

z

n n n

n h
E

ma

n h
E

mb

n h
E

mc

n yn x n z
x y z sin s

n

in sin
abc a b c

nn nh
E

x
X x sin

a a

n y
Y y si

m a b

n
b b

n z
Z z sin

c c







 









  







, ,

, ,

( , , )

( )

( )

( )

2c

 
  
 
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If the total energy can be written as a sum of independent 
variables corresponding to different degrees of freedom, 
the wave function is a product of individual terms, 
each corresponding to one of the degrees of freedom.

 

3

22 22

2 2 2

2
2 2 2

2

8

8

8

x y z

x y z

x y z

yx z
n n n

yx z
n n n

n n n x y z

n yn x n z
x y z sin sin sin

a a a a

nn nh
E

m a a a

h
E n n n

ma

  

 
    

 

  

, ,

, ,

, ,

( , , )

For a cube of side a;

Several ni combinations can 
yield the same Ej,k,l - degenerate states
Leads to the concept of degeneracy.

For the particle in a 3D box, a state is associated with  a 
three quantum numbers.  Three quantum numbers are 
generated because there are three sets of boundary 
conditions involved in 3D box.

Degeneracy is the number of ways a system can achieve
a certain specified energy.

More than one eigenfunction (state) would be associated 
with the same eigenvalue (energy) in degenerate states.

Consolidation of QM Postulates with solutions of Particle
in a Box

*( , ) ( , )x t x t dx

2( , )x t dx

In general can       be a complex 
function with terms carrying i = (-1);

If      is real then use; 




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Note: eigenvalues from an operator are of precise values.  
Measuring the value of a property associated with the 
operator of an eigen state always produce the same value.

i.e.

What if the state is described by a function that is not 
an eigen function of the operator (yet a well behaved, 
and acceptable wave function)?

Then the energy associated with that wave function 
would not yield a precise value (like an eigenvalue) 
every time the property is measured. 

What we would be able to calculate in such a case is the 
average value of the multiple single values that experiment 
would produce; and is also called the expectation value.

The single determinations are the eigen values that the 
operator would produce.

Consider a normalized wave function constructed by 
adding two wave functions of particle in a box, 
n =1 and n = 2 states as follows;

1

2 2 2x x
c d

a a a a

         
   

sin sin

2

2x x
c d

a a

 
         

    
'sin 'sin

This is an acceptable wave function, well behaved
first and second derivatives, BCs satisfied.
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

2 2

2

2 2

2

2 2

2

2

2

4

2

2

2

2

x x
c d H

a a

x x
c d

a a

x x
c d E

d

m dx

d

m dx

E
ma a a

  

 

    

           
     

          
     

           
   







'sin 'sin

'sin 'sin

'sin 'sin '







But is not an eigenfunction of the energy operator.

H

# !?!

c sin
 x

a






 d sin
2  x

a








c cos 
x

a









a
 2 d cos 2 

x

a









a


c sin 
x

a









2

a
2

 4 d sin 2 
x

a









2

a
2



d

dx

2

2

d

dx

Normalized function – however;
2

0

2 2

2 2

0

2 2

2 2 2
1

2 2 2 2 2 2
2

1      Normalization

a

a

x x
c d dx

a a a a

x x x x
c cd d dx

a a a a a a a a

c d

 

   

              
                                      
  





sin sin

sin sin sin sin

2 2 1c d Note the condition:

1    and   1   c d 

c2 and d2 are interpreted as the probability that the state 
emulates eigenstates n=1 and n=2 respectively

=1 =1=0

1x x dx x x dx      *( ) ( ) ( ) ( )

Because wave function is real and normalized

In general   E x H x dx    *( ) ( )

 un-normalized.
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Calculating momentum:

Solutions of 1D box:

n is an eigenfunction of the Hamiltonian not 
an eigenfunction of momentum operator.

The QM operator for momentum p is;  d
p i

dx
  

So we calculate  the average, <p> using postulate 4.


0

( ) ( )
a

p x p x dx  


0

0

2 2 2

( ) ( )

sin sin

a

a

p x p x dx

n x d x
p i dx

a a dx a a

 

 



              



 
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Note:
Calculated <p>  = 0; despite KE = p2/2m  0  !!

Explain.

Calculating position:

Solutions of 1D box:

Again it is a eigenfunction of the Hamiltonian not 
an eigenfunction of position operator.

The QM operator for position x is; x x

So we calculate <x>; mean x using postulate 4.

0 0

( ) ( ) ( ) ( )
a a

x x x x dx x x x dx     

0

0

2 2 2

2

( ) ( )

sin sin

a

a

x x x x dx

n x x
x x dx

a a a a

a
x

 

 



              









Calculated <x>  = a/2;  the average value of the position
is half way between the ends if 1D box.

Motion of particles in confined boundaries leads
to quantization (discrete values for properties) and the 
quantized states are described by standing wave like 
wavefunctions.

Motion of particles in infinite space, i.e. unconfined 
space (free particles) leads to a range of values 
for the properties.  The wavefunction in such situations
resemble a propagating wave.


