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Particle in a Box and the Real World
Chapter 16

The particle in a 1D box system:

n = 1,2 ,3…

BC:  (0) = 0 and (a) = 0

The potential energy function of the 1D box is an infinitely 
deep well.  An infinitely ‘deep’ potential well is only a 
theoretical construct and do not look like any real system.

Potential energy functions that could have a substantially 
deep but with a finite depth, are as follows.

Potential well with an infinitely deep potential well
implies the energy barriers are very high and impenetrable. 

Impenetrable barrier would mean that the probability 
of finding the particle outside the ‘box’ is practically 
be zero.  Thus, the wavefunction itself is zero outside
the box, 2 (outside) = 0 .

Any potential barrier that is not infinitely deep could and 
would have a non-zero probability in the barrier itself.  
Thus the wavefunction at the potential barrier wall is 
non-zero, as opposed to an infinitely deep potential well.

The particle in a 1D box system of finite potential energy:

x

V0  

KE = E – PE

Schrodinger Equation

Inside the box

KE = E

Outside the box

KE = E – V0

 Different BC than before
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Solutions of the SE for the region outside the box;

Solving the SE invokes the continuity requirement of the 
wave function in the ‘two regions’;  and (d/dx) at the 
‘wall’ are the same from inside and from outside the ‘box’ . 

BC - (finiteness of ) would make B = 0, A’ = 0, so that 
the functions are well behaved.
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The particle in a 1D box system of finite potential energy:
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n = 1,2 ,3…n’  (n’ finite)

 (-a/2)  0 and  (a/2)  0

Finite number of bound states,
and the number depends on V0.

Wave function ‘falls off’ 
exponentially in the V=V0

region. 

Lower the energy E of the state 
compared to V0 the ‘fall off’ is 
shorter.

Forbidden regions:
For any state in any region;
total energy E = KE + PE    

For the region with V = V0

the KE = E – PE
KE = (E  - V0) < 0 !

Because  KE = p2/2m   
 p = imaginary number !!
for KE to be negative.

Interpretation: Imaginary 
momentum! It is a classically 
forbidden region. 
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Fall off in the classically forbidden region depends on the 
energy (stability) of the state; fall off is faster the lower the 
energy of the state is.
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It is the confinement of the particle by way of trapping the 
particle in a ‘potential well’ that leads to quantization!

The successful model of the atom by Bohr has the same 
general characteristic of confinement of electrons into
‘shells’ with finite attractive potentials.  Each shell with a 
well defined energy.

Approximately, therefore the particle in a box in a finite
potential energy well can be considered as a first (crude)
approximation model of an atom.  At least for the purpose 
of demonstrating the quantum mechanical concepts.
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A very approximate explanation of the Covalent Bond

Low energy states

High energy states

overlap

‘Valence orbitals’
electrons in less strongly 
bound states (atom)

‘Core orbitals’
electrons in strongly 
bound states (atom).

Constructive interference 
of wave functions 
leads to bonding.

Particles (electrons)would 
share space on both 
atoms.

Chemical bonds involve the less strongly bound 
electrons, termed valence electrons.  

The strongly bound electrons are termed core 
electrons.

Conjugated molecules absorb light in the UV-Vis region.  
The electrons in the pi system can be approximated 
as electrons in a 1D- box.

nf=4

ni=3

Ef

Ei

ne = 6

CH3 CH3

CH3 CH3

CH3 CH3

Particle in a 1D box model approximates pi electrons
(conjugated) in a molecule. 

Calculating effective length ‘a’ using max.
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Particle in a 1D box model approximates pi electrons
(conjugated) in a molecule. 

nf=4

ni=3

Ef

Ei

ne = 6

Calculating effective length ‘a’ using max.
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max = 375 nm

Conjugation

Diversion: Estimate is the population ratio of 1st excited 
state to that of the ground state at 300K.

Boltzmann Distribution Law:

n4 negligible because E >> kBT (=4.1410-21 J) 

Na Na Na2

Conduction of electrons in metals

overlap
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barrier

1D Na crystal - Nan

1cm Nan;   n = 2107 atoms

Conduction band

Valence band

‘~ Continuous’

Work function

If sufficient energy (> ) is provided electrons of the 
valence band (~the top) can be taken out of the potential 
well to generate free electrons (classical particles)
- Photoelectric effect.) 

e-

h
KE

Energy gap

67 21210 J  << 10   )  @ 310 04 J 014BB k Tk T T K    ( . 

Thermal energy is sufficient to move electrons (populate) 
to the conduction band from the valence band and move 
electrons within energy states of the conduction band.

In metals the conduction band overlaps with the 
valence band.

Band gap, Ebg

metals semiconductors Non-metals

Conductors, semiconductors and insulators

Band gap, Ebg
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Quantum Mechanical Tunneling:

Effect of finite barrier width

Note the amplitudes after tunneling and dependence on 
(V0 – E) ~ probability of tunneling and a, barrier length.
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Note the amplitudes after tunneling and dependence on 
(V0 – E) ~ probability of tunneling and a, barrier length.
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Smaller (V0-E) slower decay (long decay length) of .

Tunneling and Chemical Reactions

Reaction rates – thermal energy used to overcome  the 
activation energy barrier.  Some reactions despite
large Ea has significantly large reaction rates.

An alternate path (mechanism) is tunneling, where the 
reactants penetrate the energy barrier horizontally rather 
than going over the barrier.
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The kinetic isotope effect can be used to verify tunneling
mechanism,  e.g.   hydrogen transfer reactions such as;
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The kinetic isotope effect can be used to verify tunneling
mechanism,  e.g.   hydrogen transfer reactions such as;
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Tunneling mechanism
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Quantum Wells and Quantum dots

A quantum well is a potential well with states of discrete 
energy values.

The effects of quantum confinement take place when the 
quantum well ‘thickness’ becomes comparable to the
de Broglie wavelength of the carriers (generally electrons
and holes), leading to energy levels called energy sub-bands.

http://en.wikipedia.org/wiki/Quantum_well

The energy levels in quantum dots can be modeled 
as a ‘particle in a box’ and the energy of the states would 
depend on the size of the box. 

If the size of the quantum dot is small enough that the 
quantum confinement effects dominate (typically less than 
10 nm), the electronic and optical properties are highly
tunable. 

The band gap energy of quantum dots strongly dependent on 
the diameter/size of these materials.

Quantum dots which are semiconductors can be synthesized 
in solution by controlling the crystal growth.

semiconductors

Broad absorption band Narrow emission band

bg
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http://www.intechopen.com/books/biomedical-engineering-technical-applications-in-medicine/quantum-dots-in-biomedical-research


