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Commuting and Non-commuting 
Operators
Chapter 17

Postulate 3. In any measurement of the observable 
associated with an operator the only values that will 
ever be observed are the eigen values, a, which satisfy the 
eigen value equation; 

A

A a   e. g.  .n n nH E  

If the system is an eigenstate of with eigenvalue a, 
then any measurement of the observable quantity A of 
that state will yield a value a, only. 

A

In quantum mechanics two observables A and B of a quantum 
system can be predicted (found) exactly only if the outcomes
of the measurements of  the two observables are independent
of the order in which they are determined.

Further, in quantum systems there exists a limitation on 
the uncertainty associated with some simultaneous 
measurements that can be made, regardless of the 
methodology employed.

Classical mechanics allows prediction of the information 
with no limits on the amount of information obtainable.

Classical mechanics

Uncertainty in measurements is only limited by 
capabilities of technique, measuring instrument precision 
and the investigator skill.
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Quantum mechanics.

Two observables can be known simultaneously with
high accuracy (in some cases). 

But in other cases the two observables measured would 
have an innate uncertainty. 

This uncertainty cannot be removed by the improvement 
of the technique of measurement. 

If operators     and      are associated with observed values 
(measurements) of  and , they can be measured 
simultaneously by experiment only if the measurement 
process does not change the system. 

If the first measurement changes the system, the second 
measurement will not be performed on the 
‘same’ system dealt at the first measurement.

The position (x) of an electron in an atom, if measured by 
using a probe, such as a light  ray will change the velocity 
of the electron by electron interacting with the light ray.  
So if the velocity (v), of the electron is measured after
measuring the position, it is the velocity of a different 
system!!

A B

Quantum systems are described by a wave function, 
say n(x);  assume they are eigenfunctions of operators 

and       .

The outcome of the measurement of property A followed 
by measurement of property B would then be as follows;
in stages;

 [ ( )]nB A x

   [ ( )] [ ( )] ( )n n n n nB A x B x B x     

A B

i.e.

#

  
n nn n n nBx xB A x     ( )[ ( )] ( )

The second measurement (property B) would not change 
the wave function (i.e. the state of the system) only if  is 
an eigen function of    .B

 Now, n n n nB A x x   [ ( )] ( )

Reversing the order of operations on  yields;

   [ ( )] ([ ( )] ( ))nn n n n n nnA xA AB x xx          [ ( )] ([ ( )] ( ))nn n n n n nnA xA AB x xx       

i.e.  n n n n n nx x     ( ) ( )

   [ ( )] [ ( )]n nA B x B A x Making
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   [ ( )] [ ( )]n nA B x B A x 

The above, is made possible because the operators did not
change the wavefunction., i.e. the state of the system.


n n nA x a x ( ) ( ) 

n n nB x b x ( ) ( )

The second measurement will change the wave function 
(state) if the wave function is NOT an eigen function of  
BOTH operators. 

The requirement for being able to be simultaneously measure 
two observables is that the two operators must be 
eigen operators of the same wave function.

*Test is:

  and  commutes.A B

             A B f x B Af x AB f x B A ABf x fB A A Bx f x   [ ( )] [ ( ) [ ] [ , ]] ( ) ( ) ( ) ( )

 o f  and Commutator A B.

   [ ( )] [ ( )]n nA B x B A x 

     If 0AB BA f x A B f x  [ ] ( ) [ , ] ( )

     If 0A B f x A B f xB Af x [ ( )] [ ( [ , ] (] )) 

the value of the commutator is not equal to zero, 
values for properties A and B cannot be measured 
simultaneously and exactly (with high accuracy),

are non-commuting operators.

       [ ( )] [ ( )] ( ) ( )A B f x B Af x AB f x BAf x  

Note; another form

Study Example Problem 17.1

   [ , ]  [ , ]A B B A 

  and A B
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Rz

Rz

Ry

Ry

Ry Rz

Rz Ry

Ry Rz  Rz Ry

Ry Rz - Rz Ry  0 [Ry ,Rz]  0

Non-commuting operators - example Stern-Gerlach Experiment:

Ag atom has a single unpaired electron – mag. moment.

0
dH

only
dz



Atoms orient only in two directions w.r.t. field.

Measuring  in z direction has only spots, 2 eigen functions, 
i.e two states. 

The two states were described by 2 eigen functions,  and .




A

= measuring the z components.A

= measuring the z components.A

Equal intensity 
beams

The number of spin states for silver atom are only 2,
and the complete set has only 2 wave functions  and .

The initial acceptable wavefunction describing silver 
atom can be written as;

2

1
2

2

1
c

c
Equal intensity of beams;

2 2

1 2 1 2/c c 
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B
A

A Band       do not commute.

i.e. operators for components of magnetic moments 
do not commute.

A

B

= measuring the x components.B





B

A

 BA

B A

A Band       do not commute.

i.e. operators for components of magnetic moments 
do not commute.

 AB
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2 3 4c c c   

2 3 4c c c   















 Heisenberg Uncertainty Principle.

 0[ , ]x p 

A common statement of the uncertainty principle is 
that the position and momentum of a quantum mechanical 
particle cannot be known exactly and simultaneously.

It is because;

A free particle described by ( )( , ) i kx tx t Ae   

Simplified by setting t = 0 and  = 0 ( )( ) i kxx Ae 

For simplicity the 
property in one 
direction considered.

     



 



0

i kx i kx

i kx

i kx i kx i kx i kx

i kx i kx i kx

x p x p x x

x p x p x

A B x B A x

d
p x i Ae kAe

dx

x x xAe

d
x kAe p xAe kxAe i xAe

dx

kxAe i

x

Ae x kAe

  

 





 

 











   





( ) ( )

( )

( ) ( ) ( ) ( )

( ) ( ) ( )

[ ( )] [ ( )]

( )

[ ( )]

( )

[ ] [ ]

[ ( )]

[ ( )] [ ( )]

 



 



   



  

Evaluation of commutator [x,p]
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Heisenberg Uncertainty Principle.

variance

(See Example Problem 17.5 for proof)

Alternate definition

variance = mean of squares – square of means

The values determined are not discrete, hence there are 
built in uncertainties, x and p, for example.

Uncertainty Principle;

 = variance

Illustration of Uncertainty Principle for 1D Box.

Normalized wave functions;

Note:  If a system (a state described by a wavefunction) 
is an eigenstate of the total energy operator (Hamiltonian,    )
and if a property P, of which the operator    , does not 
commute with    ,  then P cannot be known accurately 
for that system.

H
P

H

If an operator     does not commute with another operator,
, then eigenfunctions of     are not eigenfunctions of 

and vice versa.

A
B A B

If an operator     commutes with another operator, , 
then eigenfunctions of     are eigenfunctions of 
and vice versa.  

The operators       and    may differ by a multiplicative factor.

A B
A B

A B


