Lab for Section 2.1

Use good notation and show appropriate work. Write explanations in complete sentences.

- 1. State why each description of a set is *not* well-defined, then rewrite each to describe a well-defined set.
 - (a) the set of all phone numbers listed in the MSUM/NDSU phone directory
 - (b) the set of rich people who own a house in the city of Moorhead
- 2. In the town of Mathville, the barber shaves everyone except those who shave themselves. Consider the collection of people in Mathville that are shaved by the barber. Is the set well-defined?
- 3. Identify whether each set is infinite or finite.
 (a) {x : x is an atom of gold on the planet earth.}
 (b) the set of rational numbers between -3 and 2
- 4. Write a verbal description of an example of a set for each of the following sets. (a) \emptyset (b) $\{\emptyset\}$
- 5. Let $A = \{x : x \text{ is a name for a mammal.}\}$ and $B = \{2, 5, m, p, \{2\}, \{2, m\}\}$. Replace each blank with either \in or \notin .
 - (a) humpback whale A (b) great white shark A
 - (c) $\{5\} _ B$ (d) $m _ B$
- 6. Use proper set notation to rewrite each set with the list method (roster method).
 - (a) the set of natural number multiples of five between 2 and 38
 - (b) the set of integers which when squared equal 9
 - (c) the set of integers which when squared equal 7
- 7. Use proper set-builder notation to rewrite each set.
 - (a) $\{1, 4, 9, 16, 25, 36, 49\}$
 - (b) $\{3, 6, 9, 12, 15, \ldots\}$
 - (c) $\{a, e, i, o, u\}$

- 8. Determine the cardinal number, n(A), for each of the following sets.
 - (a) $A = \{x : x \text{ is a state in the United States of America.}\}$
 - (b) $A = \{x : x \text{ is a letter in the English alphabet.}\}$
 - (c) $A = \{x : x \text{ is a letter in the word Mississippi.}\}$
- 9. The following table lists the number of home runs Roger Maris hit while playing for the NY Yankees. Use set-builder notation to give a complete well-defined description of each of the following sets.

		example:
Roger Maris		$A = \{1960, 1961, 1962, 1963, 1964, 1965, 1966\}$
Year	Home Runs	$A = \{1900, 1901, 1902, 1903, 1904, 1903, 1900\}$
1960	39	$A = \{x : x \text{ is a year that Roger Maris played for the NY Yankees.}\}$
1961	61	$A = \{x : x \text{ is a year that Roger Warts played for the RVT Tankees.}\}$
1962	33	(a) $B = \{39, 61, 33, 23, 26, 8, 13\}$
1963	23	
1964	26	
1965	8	(b) $C = \{39, 61\}$
1966	13	

- 10. Identify which sets are equivalent and which sets are equal.
 - $A = \{x : x \text{ is a letter in } terror\}, B = \{x : x \text{ is a letter in } totter\}, C = \{x : x \text{ is a letter in } mirror\}, D = \{x : x \text{ is a letter in } tear\}, E = \{x : x \text{ is a letter in } tear\}, F = \{x : x \text{ is a letter in } tear\}, G = \{x : x \text{ is a letter in } tear\}, H = \{x : x \text{ is a letter in } tear\}, and I = \{x : x \text{ is a letter in } tear\}$
- 12. For the following questions, consider the set of the students in today's class. When asked to state a set use either set-builder notation or list/roster form. State the solutions to (a), (b), (g), (h), (i), and (j) in complete sentences.
 - (a) What is the cardinality of this set of students?
 - (b) Justify your answer in part (a).
 - (c) How many different seating arrangements could be made? (Assume there are exactly the same number of students and chairs.) Also, classify the problem type.
 - (d) If each person helps each other member of today's class on exactly one question, how many times would someone have been helped? Also, classify the problem type.
 - (e) Write in the simplest possible form $\{x : x \text{ is a person present in today's class who is either taller than three and one-half meters or shorter than one and one-fourth meters.}$