
1.4 Applications of Finite Geometry
One of the characteristics of successful scientists is having courage. Once you get your courage up 
and believe that you can do important problems, then you can. If you think you can't, almost surely 

you are not going to.
— Richard W. Hamming (1915–1998)

If you don't work on important problems, it's not likely that you'll do important work.
— Richard W. Hamming (1915–1998)

       The advances in computer technology have led to the need for good error-correcting codes. 
Information is sent, received, and processed in a digital format from transmission of data between 
computers and cell phones to the reading of data in shipping and price scanning. The problem is how to 
correct or minimize the errors that occur in the sending, receiving, and scanning of data. Research in 
coding theory uses results from projective geometry, group theory, and linear programming.

Richard W. Hamming (1915–1998) was the first person to devise error-correcting codes while 
he worked for Bell Telephone laboratories in the 1940’s. The motivation for devising error-correcting 
codes arose from Hamming’s frustration with often needing to restart computations. Errors in data entry 
occurred often when the punch cards, which were used to store and enter data, were read. In 1950, he 
published his results that are now referred to as the Hamming Code. One of the algorithms, the 

Hamming (7, 4) code, can detect and correct single-bit errors. Some applications still use codes 
developed by Hamming. The Hamming (7, 4) code is not the best choice due to the non-standard 
character length of 7-bits and its limitation to finding and correcting errors in a single bit position. 
Though Hamming did not develop the Hamming (7, 4) code in the manner described in this section, it is 
a nice example for illustrating relationships finite geometries have to real applications. 

The ‘7’ in the Hamming (7, 4) code represents the number of bits used to represent a codeword 
written as a binary numeral, e.g., 1001100. The ‘4’ is for the first four bit positions which are the 
information data bits, that is, the first four bits give the binary representation of the sixteen decimal 
numbers 0 through 15 (0000, 0001, 0010, …, 1111) that represent the word or message. Note that the 
binary numeral 1101 is 13 as a decimal numeral since 1(23) + 1(22) + 0(21) + 1(20) = 13. The last three 
bit positions are the redundant data bits used to check for errors. Note that these three positions are the 
binary version of the seven nonzero decimal numerals 1 through 7. From these, define the parity matrix

.

Now use a basis for the kernel of matrix Hp to form the generator matrix

where computations are modulo 2. Since the first four rows of He form the identity matrix, we encode a 
word by multiplying modulo 2. For example, the word 1101 becomes the codeword 1101001,
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The codeword for each of the sixteen possible words are listed in the table below.

Note that each codeword in the second and fourth columns is the binary complement of the codeword in 
the first column and third columns, respectively. You should verify that each codeword is in the kernel 
of the parity matrix Hp. Also, the columns of He written as vectors (code words) form a basis for the set 
of vectors (code words) in the Codeword Table, that is, the code words in the Codeword Table are the 
elements of the kernel of matrix Hp.
        How do the code words relate to a finite geometry? Consider a matrix model for Fano’s Geometry
where points are the columns and lines are rows where a ‘1’ indicates a point is incident with a line and 
a ‘0’ indicates a point is not incident with a line.

Each of these seven lines is a codeword in the Codeword Table. Also, these seven lines as vectors (code 
words) span the kernel of matrix Hp, i.e., they span the set the code words in the Codeword Table.  
        How does the algorithm for the Hamming code identify an error in the transmission of a codeword? 
An assumption is made that there is at most one bit error in the transmission of the codeword. Suppose 
the codeword 1101110 is received. 

Codeword Table
0000000 1111111 0001111 1110000
1000011 0111100 1100110 0011001
0100101 1011010 1010101 0101010
0010110 1101001 1001100 0110011

P1 P2 P3 P4 P5 P6 P7

l1 1 1 1 0 0 0 0
l2 1 0 0 0 0 1 1
l3 1 0 0 1 1 0 0
l4 0 1 0 1 0 1 0
l5 0 1 0 0 1 0 1
l6 0 0 1 1 0 0 1
l7 0 0 1 0 1 1 0



Since the vector (1, 0, 0) is not the zero vector, the codeword is not in the kernel of Hp. Hence a 
transmission error occurred. The binary numeral 100 represents the decimal number 4 since 1(4) + 0(2) 
+ 0(1) = 4. Thus the error occurs in the fourth position. Assuming a single bit error, the codeword should 
be 1100110.
        We use a finite geometry to justify why the Hamming (7, 4) code should always work for 
transmitting a seven bit codeword with the assumption of at most a single bit error. Consider the seven-
dimensional finite space consisting of all possible binary 7-tuples, i.e., each seven bit codeword is point 
in the model of the finite geometry. The space consists of 27 points (128 code words). Only sixteen of 
these 128 points are considered to be code words with no transmission errors. Hamming considered a 
distance function to measure, in some sense, how far the points are apart.

Definition. The Hamming distance  between any two binary n-tuples x and y is 

, i.e., the number of components by which the n-tuples differ.

         For example,  d(1100101, 1010110) = 4 since the two 7-tuples 
differ in the second, third, sixth, and seventh positions. In the seven-
dimensional space, the minimum Hamming distance between points 
listed in the Codeword Table is three and the maximum distance 
between any two code words is seven. Also, each codeword has exactly 
seven other code words at a Hamming distance of one. Thus, we 
consider each point (codeword) to be the center of a sphere of radius one 

that consists of exactly seven distinct points. The sixteen points (code words), listed in the Codeword 
Table, determine sixteen distinct spheres of radius one of which no two of the spheres intersect. (See the 
diagram on the left.) These sixteen spheres account for all the 128 points in the seven-dimensional finite 
space (verify). This result applied to the Hamming (7, 4) codeword implies that a transmitted codeword 
with an error in a single bit must be a Hamming distance of one from a valid codeword. The algorithm 
makes the correction by changing the single incorrect bit position. 

        A matrix model for Fano’s Geometry produces a spanning set for the valid code words in the 
Hamming (7, 4) Code. As noted in Section 1.3, Fano’s Geometry is a projective geometry of order 2. 
Projective geometries of other orders can be used to develop other error-correcting codes.

Exercise 1.22. Show the columns of matrix He determine a basis for the kernel for matrix Hp. Note all 
computations are modulo 2.

Exercise 1.23. Verify that the matrix He encodes the sixteen binary numerals 0000, 0001, …, 1111 as 
given in the Codeword Table. Note all computations are modulo 2.

Exercise 1.24. Show the matrix model for Fano’s Geometry is isomorphic to the two models given in 



Section 1.2.

Exercise 1.25. Show the lines in the matrix model for Fano’s Geometry as vectors (code words) span the 
kernel of matrix Hp.

Exercise 1.26. Use the generator matrix to encode the words 1011, 0101, and 1001. Note all 
computations are modulo 2.

Exercise 1.27. Assume each codeword has at most a single bit error. Use the parity matrix to identify the 
position of the error for 1011100, 0101001, and 1001101. Note all computations are modulo 2.

Exercise 1.28. Verify that the Hamming distance between each pair of code words in the Codeword 
Table is at least three.

Mathematics is an interesting intellectual sport but it should not be allowed to stand in the way of 
obtaining sensible information about physical processes.

— Richard W. Hamming (1915–1998)

1.3 Finite Projective Plane Geometry
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