Ch. 3 Transformational

- C

2.5.2 SAS Postulate

Euclid taught me that without assumptions there is no proof. Therefore, in any argument, examine the assumptions.

—] <u>Eric Temple Bell</u> (1883–1960)

Postulate 15. (SAS Postulate) Given a <u>one-to-one correspondence</u> between two <u>triangles</u> (or between a triangle and itself). If two sides and the included angle of the first triangle are <u>congruent</u> to the corresponding parts of the second triangle, then the correspondence is a congruence.

We restate the <u>Crossbar Theorem</u> here since it plays an important role in the proofs of some of the results in this section.

Theorem 2.9. (Crossbar Theorem) If $P \in int(\angle ABC)$, then ray BP and segment AC intersect in a unique point F and A-F-C.

Definition.

An *isosceles triangle* is a <u>triangle</u> with two <u>congruent</u> sides. If the isosceles triangle has exactly two congruent sides, the angles opposite the two congruent sides are called *base angles*, the angle formed by the two congruent sides is called the *vertex angle*, and the third noncongruent side is called the *base*.

An *equilateral triangle* is a triangle with all sides congruent. A *scalene triangle has no congruent sides*.

Theorem 2.10. (Pons Asinorum) The base angles of an isosceles triangle are congruent.

Pons Asinorum (Bridge of Asses) is Proposition 5 from Book 1 of Euclid's *Elements*. The name comes from the diagram, which looks like a bridge, used in Euclid's method for proving the theorem. (See the figure on the right or Byrne's Edition of Euclid's <u>Elements</u>.) The method used here is similar to the method used in many high school courses with one major exception. Since a proof should not be based on a picture and preconceived ideas, we need the Crossbar Theorem to fill in a gap that is not addressed in most high school courses.

Proof. Let $\triangle ABC$ be an isosceles triangle with $\overline{AB} \cong \overline{AC}$. Since every angle has a <u>unique angle bisector</u>, let ray AD be the <u>bisector</u> of $\angle BAC$. By the Crossbar Theorem, ray AD and segment BC intersect at a unique point E and B-E-C. Thus $\angle BAE = \angle BAD \cong \angle CAD = \angle CAE$. Since <u>congruence of segments is an</u> equivalence relation, $\overline{AE} \cong \overline{AE}$. Hence by SAS Postulate, $\triangle ABE \cong \triangle ACE$. Thus $\angle CBA = \angle EBA \cong \angle ECA = \angle BCA$. Therefore, the base angles of an isosceles triangle are congruent.//

Exercise 2.48. Find the axiom from a high school book that corresponds to the SAS Postulate.

Exercise 2.49. Show the SAS Postulate is not satisfied by the (a) <u>Taxicab plane</u>; and (b) <u>Max-distance plane</u>. Thus showing independence.

Exercise 2.50. Prove or disprove. If quadrilateral *ABCD* is such that \overline{BD} and \overline{AC} intersect at a point *M* and *M* is the <u>midpoint</u> of both \overline{BD} and \overline{AC} , then \overline{AB} is <u>congruent</u> to \overline{CD} .

Exercise 2.51. Prove or disprove. If quadrilateral *ABCD* has \overline{CD} congruent to \overline{CB} and ray *CA* is the bisector of $\angle DCB$, then \overline{AB} is congruent to \overline{AD} .

Exercise 2.52. Prove or disprove. If $\Box ABCD$ is a quadrilateral and $\overline{AB} \cong \overline{AD}$, then $\angle D \cong \angle B$.

Exercise 2.53. State and prove each theorem. (a) SSS Theorem; and (b) ASA Theorem.

Exercise 2.54. Prove that all points equidistant from two points A and B are on the <u>perpendicular</u> bisector of \overline{AB} .

2.5.1 Supplement Postula		2.6.1 Parallel	Lines
Ch. 2 Euclidean/NonEuclidean TOC		Table of Contents	
Timothy Peil	Mathematics Dept.	MSU Moorhead	
© Copyrig	ht 2005, 2006 - <u>Tin</u>	nothy Peil	