3.2.1 Preliminary Definitions and Assumptions

Knowing is not enough; we must apply. Willing is not enough; we must do. — Y Johann von Goethe (1749–1842)

Definition. A mapping (or function f from A to B) of a set A into a set B is a rule that pairs each element of A with exactly one element of a subset of B. The set A is called the *domain*, and the set of all elements of B (a subset of B) that are paired with an element from A is called the *range*.

Definition. A mapping f from A to B is *onto* B if for any b in B there is at least one a in A such that f(a) = b.

Definition. A mapping f from A to B is *one-to-one* if each element of the range of f is the image of exactly one element from A.

Definition. A transformation is a one-to-one mapping of a set A onto a set B.

Definition. A *transformation of a plane* is a transformation that maps points of the plane onto points in the plane.

Definition. A nonempty set G is said to form a *group under a binary operation*, *, if it satisfies the following conditions:

- i. If A and B are in G, then A*B is in G. (The set is *closed* under the operation, *closure*.)
- ii. There exists an element *I* in *G* such that for every element *A* in *G*, $I^*A = A^*I = A$. (The set has an *identity*.)
- iii. For every element A in G, there is an element B in G such that $A^*B = B^*A = I$, denoted A^{-1} . (Every element has an *inverse*.)
- iv. If A, B, and C are in G, then $(A^*B)^*C = A^*(B^*C)$. (associativity)

Theorem 3.0. The set of transformations of a plane is a group under composition.

Proof. The result follows from the following:

The composition of two transformations of a plane is a transformation (Exercise 3.4).

The inverse of a transformation is a transformation (Exercise 3.5).

The identity function is a transformation and composition of functions is associative (Exercise 3.5).//

Exercise 3.2. Which of the following mappings are transformations? Justify.

- a. $f : \mathbb{R} \to \mathbb{R}$ such that $f(x) = \frac{x-3}{2}$.
- b. $f : \mathbb{R} \to \mathbb{R}$ such that $f(x) = x^2$.
- c. $f : \mathbb{R}^2 \to \mathbb{R}^2$ such that f(x, y) = (x 2, y + 1).
- d. $f: \mathbb{R}^2 \to \mathbb{R}^2$ such that f(x, y) = (2x, 3y).
- e. Let P be a point in a plane S. Define $f: S \to S$ by f(P) = P and for any point $Q \neq P$, f(Q) is

the midpoint of \overline{PQ} .

Exercise 3.3. Let $f : \mathbb{R}^2 \to \mathbb{R}^2$ and $g : \mathbb{R}^2 \to \mathbb{R}^2$ be transformations defined respectively by f(x,y) = (x - 4, y + 1) and g(x,y) = (x + 2, y + 3).

- a. Find the composition $f \circ g$.
- b. Find the composition $g \circ f$.
- c. Find the inverse of f, f^{-1} .
- d. Find the inverse of g, g^{-1} .

Exercise 3.4. Prove the composition of two transformations of a plane is a transformation of the plane.

Exercise 3.5. (a) Prove the identity function is a transformation. (b) Prove the inverse of a transformation of a plane is a transformation of the plane. (c) Prove the composition of functions is associative.

3.1.2 Historical Overview 3.2.2 An Analytic Model for the Euclidean Plane Ch. 3 Transformational TOC Table of Contents Timothy Peil Mathematics Dept MSU Moorhead © Copyright 2005, 2006 - Timothy Peil