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Session 25 – Introduction to Probability 

 

Consider each of the following questions. 

Roy Sullivan was struck by lightning seven times. What chance does a person have of being 

struck by lightning in their lifetime? 

How is the insurance premium for car insurance determined for different people? 

What is the probability of the Minnesota Vikings winning the flip of the coin at the beginning 

of a game in all sixteen regular season games? 

 All three questions are concerned with probability. The probability of a person to have been 

struck by lightning seven times, as was Roy Sullivan, and survived each of the strikes is quite small 

on the order of 10
–24

 (0.000000000000000000000001). Roy Sullivan’s probability of being struck by 

lightning was much greater than most people since he worked as a ranger in Shenandoah National 

Park most of his adult life (http://en.wikipedia.org/wiki/Roy_Sullivan). The National Weather 

Service estimates the chances of a person being struck by lightning in their lifetime (80 years) are 

1/6250 (http://www.weather.gov/om/lightning/medical.htm). 

 Actuaries working for insurance companies use accident data and other factors to determine the 

risk or probability of a person with certain characteristics of having an accident. The probabilities 

determined from accident data are a key component in determining a person’s insurance rate 

(http://en.wikipedia.org/wiki/Auto_insurance_risk_selection). 

 Though the probability of winning the flip of a fair coin is one-half, the probability that the 

Vikings would win all sixteen regular season flips is only 

16
1 1

2 65,536

(http://en.wikipedia.org/wiki/Coin_flips).  

 

Experimental and Theoretical Probability 

 Probability is the mathematics of chance. Probability is used to describe the predictable long-

run patterns of random outcomes. For instance, if you toss a fair coin a single time, the outcome 

(heads or tails) is completely random and unpredictable. But if a coin is tossed 10,000 times, we 

would expect that the coin would come up heads approximately half the time. 

 

 To start calculating probabilities, we begin with equally likely outcomes. For instance, when 

tossing a fair coin, a head and a tail are equally likely outcomes. When tossing a standard die each of 

the six sides is equally likely to show. 

 

 When we discuss probability in mathematics, we often perform or study probability 

experiments.  Keeping track of the results from tossing a coin to determine the probability of a single 

flip would be an example of a probability experiment.  Also, a probability experiment could be 

performed by tossing a standard die or pair of dice.   

 

 When we actually perform the experiment to see what happens, we get an experimental 

probability.  For instance, John Kerrich (1903–1985) as a prisoner of war during World War II 

performed the probability experiment of tossing a coin 10,000 times and recording whether it landed 

heads or tails.  He obtained 5067 heads. So the experimental probability of getting heads for his 

experiment was 
5067

50.67%
10,000

. Though after 100 tosses, he had obtained only 44 heads. If he 

http://en.wikipedia.org/wiki/Roy_Sullivan
http://www.weather.gov/om/lightning/medical.htm
http://en.wikipedia.org/wiki/Auto_insurance_risk_selection
http://en.wikipedia.org/wiki/Coin_flips
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had stopped at that point, his experimental probability for a head would have been 
44

100
 or 44%. For 

more information on John Kerrich or his experiment, see 

http://web.wits.ac.za/Academic/Science/Stats/School/History.htm and 

http://www.wiley.com/college/stat/wild329363/pdf/ch_04.pdf). 

 

 Another type of probability that is usable for some types of problems where we do not actually 

need to perform an experiment is theoretical probability. The theoretical probability of getting heads 

on a toss of a fair coin is 
1

2
 because there is only one way to get heads out of two equally likely 

ways for the coin to land. This same type of thinking can be expanded to cover a number of 

probability situations.  But first we need to define some basic terms used in the study of probability.   

 

Some Basic Definitions for Probability 

 

Sample Space:  In probability, the set of all possible outcomes is called the Sample Space. We will 

use S to represent the sample space. In terms of the language of sets, a sample space is a universal 

set and an outcome is an element of the universal set.  

 

Example:  The sample space for the experiment of toss a coin once would be: 

 S = {H, T} because there are only two possible outcomes, Heads or Tails. 

 Notice that we frequently abbreviate the outcomes when listing them. 

 

Example:  The sample space for the experiment of a toss a standard die would be: 

 S = {1, 2, 3, 4, 5, 6} because these are the only six possible outcomes. 

 

Event: In probability, an event is a subset of the sample space. In a probability experiment, the event 

for which we wish to compute the probability is called the target event. 

 

Example: If we want to compute the probability of obtaining a head when tossing a fair coin, 

then “obtaining a head” is the event. Note that {H} is a subset of S = {H, T}. Also, 

P(H) represents the probability of obtaining a head. 

 

Example:  If we want to compute the probability of getting a 3 or 4 when tossing a standard die, 

then “getting a 3 or 4” is the target event. Note that E = {3, 4} is a subset of S = {1, 2, 

3, 4, 5, 6}. Also, P(E) is the notation that stands for the probability of event E 

occurring. 

                               

 For an experiment in which all outcomes are equally likely, the probability of an event E is 

computed by finding the ratio of the number of elements in the target event E to the number of 

elements in the sample space S. In the context of probability, we write ratios in their fraction form. 

  

             Example:  The event of obtaining a 3 or 4 in the experiment of a toss of a standard die is  

E = {3, 4}. The sample space for the experiment of a toss a standard die is  

S = {1, 2, 3, 4, 5, 6}. 

So P(E) = 
n( ) 2 1

n( ) 6 3

E

S
. 

Remember that n(E) is the cardinal number of the set of events and n(S) is the 

cardinal number of the sample space. 

http://web.wits.ac.za/Academic/Science/Stats/School/History.htm
http://www.wiley.com/college/stat/wild329363/pdf/ch_04.pdf
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Example: What is the probability of getting an even number when a fair, 6-sided die is 

rolled?  Express this probability as a percent. 

 First we determine the sample space.  Since a fair 6-sided die only has the 

numbers 1, 2, 3, 4, 5, and 6 as possibilities, and each is as likely to happen as the 

other, the sample space S = {1, 2, 3, 4, 5, 6} consists of equally likely outcomes.   

 Then we need to determine the target event set. In this case we want even 

numbers that can occur on a 6-sided die.  Thus our event E = {2, 4, 6}. 

 So P(E) = 
n( ) 3

0.5 50%
n( ) 6

E

S
. The probability of obtaining an even number 

when a fair standard die is tossed is 50%. 

 

Sample Spaces for Multi-Stage Probability Experiments 

 

 We can perform several different probability experiments, one after another, and then consider 

the probability of the series of outcomes that result. For example, we could toss a coin and then toss 

a standard die. This is a 2-stage experiment because it consists of two separate experiments 

performed one after the other. Each outcome would also have two parts. Such outcomes are written 

as ordered pairs using parentheses to indicate that the outcomes must follow in the order they are 

written. For a two-stage experiment, the sample space is the set of all possible ordered pairs, that is, 

we form the Cartesian Product (see Session 9) of the two stages. For experiments with more than 

two stages, we often generate the sample space by making a tree diagram. Examples of both of these 

methods follow. 

 

Generate the Sample Space Using Table to Form the Cartesian Product 
 

 When there are only two stages in an experiment, a common way to list the possible outcomes 

is to form a Cartesian Product. This is similar to when you formed sets of ordered pairs in algebra 

when you graphed on a Cartesian coordinate plane. In algebra, we used a horizontal and vertical axis 

where the horizontal axis represented the first values, x, and the vertical axis represented the second 

values, y, in ordered pairs, (x, y). Here, we create a table where the rows represent the possible 

outcomes for the first experiment (down the side) and the columns represent the possible outcomes 

for the second experiment (across the top). Like this:

  

                                                   

 

 

 
To form the Cartesian Product, we list in each interior cell of the table, the ordered pair that results 

from the outcome listed at the side followed by the outcomes listed at the top. 

 

 1 2 3 4 5 6 

Heads (H,1) (H,2) (H,3) (H,4) (H,5) (H,6) 

Tails (T,1) (T,2) (T,3) (T,4) (T,5) (T,6) 

 

The sample space is the set of outcomes listed in the shaded cells, S = {(H,1), (H,2), (H,3), (H,4), 

(H,5), (H,6), (T,1), (T, 2), (T,3), (T,4), (T,5), (T,6)}. Note that we have twelve possible outcomes in 

 

outcomes 

to “toss a 

coin”

 

                outcomes to “toss a standard die” 

 1 2 3 4 5 6 

Heads       

Tails       
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this sample space for this two-stage experiment, which follows from the Fundamental Principle of 

counting, 2 ∙ 6 = 12. 

Generate the Sample Space Using a Tree Diagram to Form the Cartesian Product 

 When a probability experiment involves more than two actions, we often use a tree diagram to 

find the sample space. For example, for the experiment “toss a coin three times and record the results 

from each toss”, we could draw the following tree diagram. 

          1st Toss             2
nd 

Toss         3
rd

 Toss                     Sample Space Outcomes 

  

The sample space for the problem is S = {(H,H,H), (H,H,T), (H,T,H), (H,T,T), (T,H,H), (T,H,T), 

(T,T,H), (T,T,T)}. Each outcome is an ordered triple and we usually write the set in the abbreviated 

form S = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}. Also, note that HHT, HTH, and THH 

are three distinct outcomes even though they both consist of two heads and one tail. Also, note that 

there are 2 ∙ 2 ∙ 2 = 8 outcomes, which follows from the Fundamental Principle of Counting. 

 Outcomes that are NOT Equally-Likely 

 Sometimes the outcomes in a probability experiment are not equally likely.  For 

instance, in the spinner to the right, the outcomes blue and yellow are 

equally likely because they represent the same area on the spinner, but the 

outcome red is twice as likely because it occupies twice as much area as 

either blue or yellow. The sample space is S = {blue, red, yellow} even 

though each outcome is not equally likely.  

  

 But to simplify the problem for this case, we could rewrite the sample 

space as {blue, red1, red2, yellow}. By doing this, each of the outcomes listed is equally 

likely because we have listed the color red twice. Notice that because we were 

writing this as a set, we cannot simply write red in the set twice, because each 

element in a set must be distinct or it would represent the same element. By 

listing the outcomes as red1 and red2, we are indicating that there are two 

distinct areas that result in the outcome of red as illustrated in the second 

diagram.   

 

Note: Often a sample space does not have its outcomes all equally-likely. Further, we are 

often not able to do the above procedure where the outcomes are made equally-likely. 
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