Table of Contents

Motivation for Exponents

-------------------------

Exponents

-------------------------

Exponents and Cartesian Product

-------------------------

Scientific Notation

-------------------------

Multiplying Variable Expressions

-------------------------

Order of Operations

-------------------------

More Examples Multiplying Expressions

 

 

 

 

 

 

More Examples Multiplying Expressions

Consider (2x)4. In this case we are taking the entire product inside the parentheses to the 4th power.

(2x)4 = (2x)((2x)(2x)(2x)

Definition of the exponent 4

= (2 · 2 · 2 · 2)(x · x · x · x)

Commutative and Associative Properties

= 24x4

Definition of Exponents

Here is another example: (ab 2)3.

(ab2)3 = (ab2) · (ab2) · (ab2)

Definition of exponent 3

= (a · a · a) · (b2 · b2 · b2)

Commutative and Associative Properties

= (a · a · a) · (b · b) · (b · b) · (b · b)

Definition of exponent 2

= (a · a · a) · (b · b · b · b · b · b)

Associative Property

= a3b6

Definition of Exponents

Another example: (x4y3)2.

(x4y3)2 = (x4y3) · (x4y3)

Definition of exponent 2

= (x · x · x · x) · (y · y · y) · (x · x · x · x) · (y · y · y)

Definition of the exponents 4 and 3

= (x · x · x · x) · (x · x · x · x) · (y · y · y) · (y · y · y)

Commutative Property of Multiplication

= (x · x · x · x · x · x · x · x) · (y · y · y · y · y · y)

Associative Property of Multiplication

= x8y6

Definition of Exponents

Note that these problems are motivating the Properties of Exponents, which are methods for working these problems in a more efficient manner. Some of the Properties of Exponents will be developed later in Session 29.

Self-Check Problem

Evaluate (m2n3)4.

Solution

Joke or Quote

Teacher: "What is 7 times 6?"
Student: "It's 42!"
Teacher: "Very good! - And what is 6 times 7?"
Same student: "It's 24!"


return to top | previous page